Spaces:
Sleeping
Sleeping
File size: 17,273 Bytes
427d150 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
"""
Validation script
"""
import os
import shutil
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import MultiStepLR
import torch.backends.cudnn as cudnn
import numpy as np
import matplotlib.pyplot as plt
from models.grid_proto_fewshot import FewShotSeg
from dataloaders.dev_customized_med import med_fewshot_val
from dataloaders.ManualAnnoDatasetv2 import ManualAnnoDataset
from dataloaders.GenericSuperDatasetv2 import SuperpixelDataset
from dataloaders.dataset_utils import DATASET_INFO, get_normalize_op
from dataloaders.niftiio import convert_to_sitk
import dataloaders.augutils as myaug
from util.metric import Metric
from util.consts import IMG_SIZE
from util.utils import cca, sliding_window_confidence_segmentation, plot_3d_bar_probabilities, save_pred_gt_fig, plot_heatmap_of_probs
from config_ssl_upload import ex
from tqdm import tqdm
import SimpleITK as sitk
from torchvision.utils import make_grid
from tqdm.auto import tqdm
from util.utils import set_seed, t2n, to01, compose_wt_simple
# config pre-trained model caching path
os.environ['TORCH_HOME'] = "./pretrained_model"
def test_time_training(_config, model, image, prediction):
model.train()
data_name = _config['dataset']
my_weight = compose_wt_simple(_config["use_wce"], data_name)
criterion = nn.CrossEntropyLoss(
ignore_index=_config['ignore_label'], weight=my_weight)
if _config['optim_type'] == 'sgd':
optimizer = torch.optim.SGD(model.parameters(), **_config['optim'])
elif _config['optim_type'] == 'adam':
optimizer = torch.optim.AdamW(
model.parameters(), lr=_config['lr'], eps=1e-5)
else:
raise NotImplementedError
optimizer.zero_grad()
scheduler = MultiStepLR(
optimizer, milestones=_config['lr_milestones'], gamma=_config['lr_step_gamma'])
tr_transforms = myaug.transform_with_label(
{'aug': myaug.get_aug(_config['which_aug'], _config['input_size'][0])})
comp = np.concatenate([image.transpose(1, 2, 0), prediction[None,...].transpose(1,2,0)], axis= -1)
print("Test Time Training...")
pbar = tqdm(range(_config['n_steps']))
for idx in pbar:
query_image, query_label = tr_transforms(comp, c_img=image.shape[0], c_label=1, nclass=2, use_onehot=False)
support_image, support_label = tr_transforms(comp, c_img=image.shape[0], c_label=1, nclass=2, use_onehot=False)
query_label = torch.from_numpy(query_label.transpose(2,1,0)).cuda().long()
query_images = [torch.from_numpy(query_image.transpose(2, 1, 0)).unsqueeze(0).cuda().float().requires_grad_(True)]
support_fg_mask = [[torch.from_numpy(support_label.transpose(2, 1, 0)).cuda().float().requires_grad_(True)]]
support_bg_mask = [[torch.from_numpy(1 - support_label.transpose(2, 1, 0)).cuda().float().requires_grad_(True)]]
support_images = [[torch.from_numpy(support_image.transpose(2, 1, 0)).unsqueeze(0).cuda().float().requires_grad_(True)]]
# fig, ax = plt.subplots(1, 2)
# ax[0].imshow(query_images[0][0,0].cpu().numpy())
# ax[1].imshow(support_image[...,0])
# ax[1].imshow(support_label[...,0], alpha=0.5)
# fig.savefig("debug/query_support_ttt.png")
out = model(support_images, support_fg_mask, support_bg_mask, query_images, isval=False, val_wsize=None)
query_pred, align_loss, _, _, _, _, _ = out
# fig, ax = plt.subplots(1, 2)
# pred = np.array(query_pred.argmax(dim=1)[0].cpu())
# ax[0].imshow(query_images[0][0,0].cpu().numpy())
# ax[0].imshow(pred, alpha=0.5)
# ax[1].imshow(support_image[...,0])
# ax[1].imshow(support_label[...,0], alpha=0.5)
# fig.savefig("debug/ttt.png")
loss = 0.0
loss += criterion(query_pred.float(), query_label.long())
loss += align_loss
loss.backward()
if (idx + 1) % _config['grad_accumulation_steps'] == 0:
optimizer.step()
optimizer.zero_grad()
scheduler.step()
pbar.set_postfix(loss=f"{loss.item():.4f}")
model.eval()
return model
@ex.automain
def main(_run, _config, _log):
if _run.observers:
os.makedirs(f'{_run.observers[0].dir}/interm_preds', exist_ok=True)
for source_file, _ in _run.experiment_info['sources']:
os.makedirs(os.path.dirname(f'{_run.observers[0].dir}/source/{source_file}'),
exist_ok=True)
_run.observers[0].save_file(source_file, f'source/{source_file}')
shutil.rmtree(f'{_run.observers[0].basedir}/_sources')
torch.cuda.set_device(device=_config['gpu_id'])
torch.set_num_threads(1)
_log.info(f'###### Reload model {_config["reload_model_path"]} ######')
model = FewShotSeg(image_size=_config['input_size'][0],
pretrained_path=_config['reload_model_path'], cfg=_config['model'])
model = model.cuda()
model.eval()
_log.info('###### Load data ######')
# Training set
data_name = _config['dataset']
if data_name == 'SABS_Superpix' or data_name == 'SABS_Superpix_448' or data_name == 'SABS_Superpix_672':
baseset_name = 'SABS'
max_label = 13
elif data_name == 'C0_Superpix':
raise NotImplementedError
baseset_name = 'C0'
max_label = 3
elif data_name == 'CHAOST2_Superpix' or data_name == 'CHAOST2_Superpix_672':
baseset_name = 'CHAOST2'
max_label = 4
elif 'lits' in data_name.lower():
baseset_name = 'LITS17'
max_label = 4
else:
raise ValueError(f'Dataset: {data_name} not found')
test_labels = DATASET_INFO[baseset_name]['LABEL_GROUP']['pa_all'] - \
DATASET_INFO[baseset_name]['LABEL_GROUP'][_config["label_sets"]]
_log.info(
f'###### Labels excluded in training : {[lb for lb in _config["exclude_cls_list"]]} ######')
_log.info(
f'###### Unseen labels evaluated in testing: {[lb for lb in test_labels]} ######')
if baseset_name == 'SABS':
tr_parent = SuperpixelDataset( # base dataset
which_dataset=baseset_name,
base_dir=_config['path'][data_name]['data_dir'],
idx_split=_config['eval_fold'],
mode='val', # 'train',
# dummy entry for superpixel dataset
min_fg=str(_config["min_fg_data"]),
image_size=_config['input_size'][0],
transforms=None,
nsup=_config['task']['n_shots'],
scan_per_load=_config['scan_per_load'],
exclude_list=_config["exclude_cls_list"],
superpix_scale=_config["superpix_scale"],
fix_length=_config["max_iters_per_load"] if (data_name == 'C0_Superpix') or (
data_name == 'CHAOST2_Superpix') else None,
use_clahe=_config['use_clahe'],
norm_mean=0.18792 * 256 if baseset_name == 'LITS17' else None,
norm_std=0.25886 * 256 if baseset_name == 'LITS17' else None
)
norm_func = tr_parent.norm_func
else:
norm_func = get_normalize_op(modality='MR', fids=None)
te_dataset, te_parent = med_fewshot_val(
dataset_name=baseset_name,
base_dir=_config['path'][data_name]['data_dir'],
idx_split=_config['eval_fold'],
scan_per_load=_config['scan_per_load'],
act_labels=test_labels,
npart=_config['task']['npart'],
nsup=_config['task']['n_shots'],
extern_normalize_func=norm_func,
image_size=_config["input_size"][0],
use_clahe=_config['use_clahe'],
use_3_slices=_config["use_3_slices"]
)
# dataloaders
testloader = DataLoader(
te_dataset,
batch_size=1,
shuffle=False,
num_workers=1,
pin_memory=False,
drop_last=False
)
_log.info('###### Set validation nodes ######')
mar_val_metric_node = Metric(max_label=max_label, n_scans=len(
te_dataset.dataset.pid_curr_load) - _config['task']['n_shots'])
_log.info('###### Starting validation ######')
mar_val_metric_node.reset()
if _config["sliding_window_confidence_segmentation"]:
print("Using sliding window confidence segmentation") # TODO delete this
save_pred_buffer = {} # indexed by class
for curr_lb in test_labels:
te_dataset.set_curr_cls(curr_lb)
support_batched = te_parent.get_support(curr_class=curr_lb, class_idx=[
curr_lb], scan_idx=_config["support_idx"], npart=_config['task']['npart'])
# way(1 for now) x part x shot x 3 x H x W] #
support_images = [[shot.cuda() for shot in way]
for way in support_batched['support_images']] # way x part x [shot x C x H x W]
suffix = 'mask'
support_fg_mask = [[shot[f'fg_{suffix}'].float().cuda() for shot in way]
for way in support_batched['support_mask']]
support_bg_mask = [[shot[f'bg_{suffix}'].float().cuda() for shot in way]
for way in support_batched['support_mask']]
curr_scan_count = -1 # counting for current scan
_lb_buffer = {} # indexed by scan
_lb_vis_buffer = {}
last_qpart = 0 # used as indicator for adding result to buffer
for idx, sample_batched in enumerate(tqdm(testloader)):
# we assume batch size for query is 1
_scan_id = sample_batched["scan_id"][0]
if _scan_id in te_parent.potential_support_sid: # skip the support scan, don't include that to query
continue
if sample_batched["is_start"]:
ii = 0
curr_scan_count += 1
print(
f"Processing scan {curr_scan_count + 1} / {len(te_dataset.dataset.pid_curr_load)}")
_scan_id = sample_batched["scan_id"][0]
outsize = te_dataset.dataset.info_by_scan[_scan_id]["array_size"]
# original image read by itk: Z, H, W, in prediction we use H, W, Z
outsize = (_config['input_size'][0],
_config['input_size'][1], outsize[0])
_pred = np.zeros(outsize)
_pred.fill(np.nan)
# assign proto shows in the query image which proto is assigned to each pixel, proto_grid is the ids of the prototypes in the support image used, support_images are the 3 support images, support_img_parts are the parts of the support images used for each query image
_vis = {'assigned_proto': [None] * _pred.shape[-1], 'proto_grid': [None] * _pred.shape[-1],
'support_images': support_images, 'support_img_parts': [None] * _pred.shape[-1]}
# the chunck of query, for assignment with support
q_part = sample_batched["part_assign"]
query_images = [sample_batched['image'].cuda()]
query_labels = torch.cat(
[sample_batched['label'].cuda()], dim=0)
if 1 not in query_labels and not sample_batched["is_end"] and _config["skip_no_organ_slices"]:
ii += 1
continue
# [way, [part, [shot x C x H x W]]] ->
# way(1) x shot x [B(1) x C x H x W]
sup_img_part = [[shot_tensor.unsqueeze(
0) for shot_tensor in support_images[0][q_part]]]
sup_fgm_part = [[shot_tensor.unsqueeze(
0) for shot_tensor in support_fg_mask[0][q_part]]]
sup_bgm_part = [[shot_tensor.unsqueeze(
0) for shot_tensor in support_bg_mask[0][q_part]]]
# query_pred_logits, _, _, assign_mats, proto_grid, _, _ = model(
# sup_img_part, sup_fgm_part, sup_bgm_part, query_images, isval=True, val_wsize=_config["val_wsize"], show_viz=True)
with torch.no_grad():
out = model(sup_img_part, sup_fgm_part, sup_bgm_part,
query_images, isval=True, val_wsize=_config["val_wsize"])
query_pred_logits, _, _, assign_mats, proto_grid, _, _ = out
pred = np.array(query_pred_logits.argmax(dim=1)[0].cpu())
if _config["ttt"]:
state_dict = model.state_dict()
model = test_time_training(_config, model, sample_batched['image'].numpy()[0], pred)
out = model(sup_img_part, sup_fgm_part, sup_bgm_part,
query_images, isval=True, val_wsize=_config["val_wsize"])
query_pred_logits, _, _, assign_mats, proto_grid, _, _ = out
pred = np.array(query_pred_logits.argmax(dim=1)[0].cpu())
if _config["reset_after_slice"]:
model.load_state_dict(state_dict)
query_pred = query_pred_logits.argmax(dim=1).cpu()
query_pred = F.interpolate(query_pred.unsqueeze(
0).float(), size=query_labels.shape[-2:], mode='nearest').squeeze(0).long().numpy()[0]
if _config["debug"]:
save_pred_gt_fig(query_images, query_pred, query_labels, sup_img_part[0], sup_fgm_part[0][0],
f'debug/preds/scan_{_scan_id}_label_{curr_lb}_{idx}_gt_vs_pred.png')
if _config['do_cca']:
query_pred = cca(query_pred, query_pred_logits)
if _config["debug"]:
save_pred_gt_fig(query_images, query_pred, query_labels,
f'debug/scan_{_scan_id}_label_{curr_lb}_{idx}_gt_vs_pred_after_cca.png')
_pred[..., ii] = query_pred.copy()
# _vis['assigned_proto'][ii] = assign_mats
# _vis['proto_grid'][ii] = proto_grid.cpu()
# proto_ids = torch.unique(proto_grid)
# _vis['support_img_parts'][ii] = q_part
if (sample_batched["z_id"] - sample_batched["z_max"] <= _config['z_margin']) and (sample_batched["z_id"] - sample_batched["z_min"] >= -1 * _config['z_margin']) and not sample_batched["is_end"]:
mar_val_metric_node.record(query_pred, np.array(
query_labels[0].cpu()), labels=[curr_lb], n_scan=curr_scan_count)
else:
pass
ii += 1
# now check data format
if sample_batched["is_end"]:
if _config['dataset'] != 'C0':
_lb_buffer[_scan_id] = _pred.transpose(
2, 0, 1) # H, W, Z -> to Z H W
else:
_lb_buffer[_scan_id] = _pred
# _lb_vis_buffer[_scan_id] = _vis
save_pred_buffer[str(curr_lb)] = _lb_buffer
# save results
for curr_lb, _preds in save_pred_buffer.items():
for _scan_id, _pred in _preds.items():
_pred *= float(curr_lb)
itk_pred = convert_to_sitk(
_pred, te_dataset.dataset.info_by_scan[_scan_id])
fid = os.path.join(
f'{_run.observers[0].dir}/interm_preds', f'scan_{_scan_id}_label_{curr_lb}.nii.gz')
sitk.WriteImage(itk_pred, fid, True)
_log.info(f'###### {fid} has been saved ######')
# compute dice scores by scan
m_classDice, _, m_meanDice, _, m_rawDice = mar_val_metric_node.get_mDice(
labels=sorted(test_labels), n_scan=None, give_raw=True)
m_classPrec, _, m_meanPrec, _, m_classRec, _, m_meanRec, _, m_rawPrec, m_rawRec = mar_val_metric_node.get_mPrecRecall(
labels=sorted(test_labels), n_scan=None, give_raw=True)
mar_val_metric_node.reset() # reset this calculation node
# write validation result to log file
_run.log_scalar('mar_val_batches_classDice', m_classDice.tolist())
_run.log_scalar('mar_val_batches_meanDice', m_meanDice.tolist())
_run.log_scalar('mar_val_batches_rawDice', m_rawDice.tolist())
_run.log_scalar('mar_val_batches_classPrec', m_classPrec.tolist())
_run.log_scalar('mar_val_batches_meanPrec', m_meanPrec.tolist())
_run.log_scalar('mar_val_batches_rawPrec', m_rawPrec.tolist())
_run.log_scalar('mar_val_batches_classRec', m_classRec.tolist())
_run.log_scalar('mar_val_al_batches_meanRec', m_meanRec.tolist())
_run.log_scalar('mar_val_al_batches_rawRec', m_rawRec.tolist())
_log.info(f'mar_val batches classDice: {m_classDice}')
_log.info(f'mar_val batches meanDice: {m_meanDice}')
_log.info(f'mar_val batches classPrec: {m_classPrec}')
_log.info(f'mar_val batches meanPrec: {m_meanPrec}')
_log.info(f'mar_val batches classRec: {m_classRec}')
_log.info(f'mar_val batches meanRec: {m_meanRec}')
print("============ ============")
_log.info(f'End of validation')
return 1
|