Spaces:
Sleeping
Sleeping
File size: 26,281 Bytes
427d150 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 |
"""Util functions
Extended from original PANet code
TODO: move part of dataset configurations to data_utils
"""
import random
import torch
import numpy as np
import operator
import cv2
import matplotlib.pyplot as plt
import kneed
import urllib
from tqdm.auto import tqdm
from sklearn.decomposition import PCA
import torchvision.transforms.functional as F
def plot_connected_components(cca_output, original_image, confidences:dict=None, title="debug/connected_components.png"):
num_labels, labels, stats, centroids = cca_output
# Create an output image with random colors for each component
output_image = np.zeros((labels.shape[0], labels.shape[1], 3), np.uint8)
for label in range(1, num_labels): # Start from 1 to skip the background
mask = labels == label
output_image[mask] = np.random.randint(0, 255, size=3)
# Plotting the original and the colored components image
plt.figure(figsize=(10, 5))
plt.subplot(121), plt.imshow(original_image), plt.title('Original Image')
plt.subplot(122), plt.imshow(cv2.cvtColor(output_image, cv2.COLOR_BGR2RGB)), plt.title('Connected Components')
if confidences is not None:
# Plot the axes color chart with the confidences, use the same colors as the connected components
plt.subplot(122)
scatter = plt.scatter(centroids[:, 0], centroids[:, 1], c=list(confidences.values()), cmap='jet')
plt.colorbar(scatter)
plt.savefig(title)
plt.close()
def reverse_tensor(tensor, original_h, original_w, degrees):
"""
tensor: tensor of shape (B, C, H, W) to be rotated
original_h: int - original height of the tensor (after it was rotated)
original_w: int - original width of the tensor (after it was rotated)
degrees: int or float - angle in degrees couterclockwise
"""
_, _, h, w = tensor.shape # this is the shape that we want to return to
if tensor.shape[-2:] != (original_h, original_w):
tensor = F.resize(tensor, (original_h, original_w), interpolation=F.InterpolationMode.BILINEAR, antialias=True)
# print("interpolating")
rotated_tensor = F.rotate(tensor, degrees, expand=False)
# remove the black padding
h_remove = abs(h - original_h) // 2
w_remove = abs(w - original_w) // 2
if h_remove > 0 and w_remove > 0:
rotated_tensor = rotated_tensor[:, :, h_remove:-h_remove, w_remove:-w_remove]
return rotated_tensor
def need_softmax(tensor, dim=1):
return not torch.all(torch.isclose(tensor.sum(dim=dim), torch.ones_like(tensor.sum(dim=dim))) & (tensor >= 0))
def rotate_tensor_no_crop(image_tensor, degrees):
"""
image_tensor: tensor of shape (B, C, H, W)
degrees: int or float - angle in degrees couterclockwise
returns: tensor of shape (B, C, H, W) rotated by degrees,
"""
if degrees == 0:
return image_tensor, image_tensor.shape[-2:]
b, c, h, w = image_tensor.shape
rotated_tensor = F.rotate(image_tensor, degrees, expand=True)
interpolation_mode = F.InterpolationMode.BILINEAR
if c == 1:
interpolation_mode = F.InterpolationMode.NEAREST
resized_tensor = F.resize(rotated_tensor, (h, w), interpolation=interpolation_mode, antialias=True)
return resized_tensor, rotated_tensor.shape[-2:]
def plot_dinov2_fts(img_fts, title="debug/img_fts.png"):
"""
Using PCA to reduce img_fts to 2D and plot it
Args:
img_fts: (B, C, H, W)
"""
if isinstance(img_fts, torch.Tensor):
img_fts = img_fts.cpu().detach().numpy()
B, C, H, W = img_fts.shape
img_fts_reshaped = img_fts.transpose(0, 2, 3, 1).reshape(-1, C)
# Apply PCA to reduce dimensionality from C to 1
pca = PCA(n_components=1)
img_fts_pca = pca.fit_transform(img_fts_reshaped)
# Reshape back to (B, 1, H, W)
img_fts_reduced = img_fts_pca.reshape(B, H, W, 1).transpose(0, 3, 1, 2)
# Plot the B images
if B == 1:
fig, ax = plt.subplots(figsize=(5, 5))
ax.imshow(img_fts_reduced[0, 0])
else:
fig, axes = plt.subplots(1, B, figsize=(B*5, 5))
for i, ax in enumerate(axes.flat):
ax.imshow(img_fts_reduced[i, 0])
# ax.axis('off')
plt.tight_layout()
plt.savefig(title)
plt.close(fig)
def move_to_device(dict_obj, device='cuda'):
for key in dict_obj:
value = dict_obj[key]
if isinstance(value, torch.Tensor):
dict_obj[key] = value.to(device)
elif isinstance(value, list):
for i, item in enumerate(value):
if isinstance(item, torch.Tensor):
dict_obj[key][i] = item.to(device)
def validation_single_slice(model, support_images, support_fg_mask, support_bg_mask, query_images, _config, q_part=0):
model.eval()
sup_img_part = [[shot_tensor.unsqueeze(0) for shot_tensor in support_images[0][q_part]]] # way(1) x shot x [B(1) x C x H x W]
sup_fgm_part = [[shot_tensor.unsqueeze(0) for shot_tensor in support_fg_mask[0][q_part]]]
sup_bgm_part = [[shot_tensor.unsqueeze(0) for shot_tensor in support_bg_mask[0][q_part]]]
with torch.no_grad():
query_pred_logits, _, _, assign_mats, _, _ = model( sup_img_part , sup_fgm_part, sup_bgm_part, query_images, isval = True, val_wsize = _config["val_wsize"] )
query_pred = np.array(query_pred_logits.argmax(dim=1)[0].cpu().detach())
if _config['do_cca']:
query_pred = cca(query_pred, query_pred_logits)
if _config["debug"]:
# plot the support images, support fg mask, query image, query pred before cca and query pred after cca
fig, ax = plt.subplots(3, 2, figsize=(15, 10))
ax[0,0].imshow(support_images[0][q_part][0,0].cpu().numpy(), cmap='gray')
ax[0,1].imshow(support_fg_mask[0][q_part][0].cpu().numpy(), cmap='gray')
ax[1,0].imshow(query_images[0][0][0].cpu().numpy(), cmap='gray')
ax[1,1].imshow(query_pred_logits.argmax(dim=1)[0].cpu().detach().numpy(), cmap='gray')
ax[2,0].imshow(query_pred, cmap='gray')
ax[2,1].imshow(query_pred_logits.argmax(dim=1)[0].cpu().detach().numpy(), cmap='gray')
# remove all ticks
for axi in ax.flat:
axi.set_xticks([])
axi.set_yticks([])
fig.savefig("debug/cca_before_after.png")
plt.close(fig)
model.train()
return query_pred, query_pred_logits
def validation_on_scans(model, curr_lb, support_images, support_fg_mask, support_bg_mask, testloader, te_parent, te_dataset, _config, sup_img_indx=1, save_pred_buffer=None):
if save_pred_buffer is None:
save_pred_buffer = {}
lb_buffer = {}
conf_buffer = {}
# sup_img_part = [[shot_tensor.unsqueeze(0) for shot_tensor in support_images[0][sup_img_indx]]] # way(1) x shot x [B(1) x C x H x W]
# sup_fgm_part = [[shot_tensor.unsqueeze(0) for shot_tensor in support_fg_mask[0][sup_img_indx]]]
# sup_bgm_part = [[shot_tensor.unsqueeze(0) for shot_tensor in support_bg_mask[0][sup_img_indx]]]
for scan_idx, sample_batched in enumerate(testloader):
print(f"Processing scan: {scan_idx + 1} / {len(testloader)}")
_scan_id = sample_batched["scan_id"][0]
if _scan_id in te_parent.potential_support_sid: # skip the support scan, don't include that to query
print(f"Skipping support scan: {_scan_id}") # TODO delete
continue
outsize = te_dataset.dataset.info_by_scan[_scan_id]["array_size"]
outsize = (_config['input_size'][0], _config['input_size'][1], outsize[0]) # original image read by itk: Z, H, W, in prediction we use H, W, Z
_pred = np.zeros( outsize )
_pred.fill(np.nan)
conf_buffer[_scan_id] = []
query_images = sample_batched['image'].cuda()
z_min = sample_batched['z_min'][0]
z_max = sample_batched['z_max'][0]
# create an index list that starts with s_idx goes down to 0, then concat the indices from s_idx + 1 to the end
# this is to make sure that the most similiar slice is the first one to be processed
indices = list(range(len(query_images[0])))
qpart = sup_img_indx
for idx, i in enumerate(tqdm(indices)):
if _config["use_3_slices"]:
# change the query to 3 slices (-1, 0, 1)
if i == 0:
prev_q = torch.zeros_like(query_images[0, i]).unsqueeze(0)
else:
prev_q = query_images[0, i - 1].unsqueeze(0)
if i == len(query_images[0]) - 1:
next_q = torch.zeros_like(query_images[0, i]).unsqueeze(0)
else:
next_q = query_images[0, i + 1].unsqueeze(0)
query = torch.cat([prev_q, query_images[0, i].unsqueeze(0), next_q], dim=1)
else:
query = query_images[0, i].unsqueeze(0)
query_pred, query_pred_logits = validation_single_slice(model, support_images, support_fg_mask, support_bg_mask, [query], _config, q_part=qpart)
query_conf = get_confidence_from_logits(query_pred_logits, query_pred)
conf_buffer[_scan_id].append(query_conf)
_pred[..., i] = query_pred.copy()
if _config['dataset'] != 'C0':
lb_buffer[_scan_id] = _pred.transpose(2,0,1)
else:
lb_buffer[_scan_id] = _pred
save_pred_buffer[str(curr_lb)] = lb_buffer
return save_pred_buffer, conf_buffer
def validation(model, curr_lb, testloader, te_parent, te_dataset, _config, support_images, support_fg_mask, support_bg_mask, mar_val_metric_node=None, save_pred_buffer=None, do_validation=False, get_confidence=False):
model.eval()
with torch.no_grad():
curr_scan_count = -1 # counting for current scan
_lb_buffer = {} # indexed by scan
_conf_buffer = {} # indexed by scan
_has_label_buffer = {} # indexed by scan
last_qpart = 0 # used as indicator for adding result to buffer
for idx, sample_batched in enumerate(tqdm(testloader)):
_scan_id = sample_batched["scan_id"][0] # we assume batch size for query is 1
if _scan_id in te_parent.potential_support_sid: # skip the support scan, don't include that to query
continue
if sample_batched["is_start"]:
ii = 0
curr_scan_count += 1
if do_validation:
if curr_scan_count > 0:
break
print(f"Processing scan {curr_scan_count + 1} / {len(te_dataset.dataset.pid_curr_load)}")
_scan_id = sample_batched["scan_id"][0]
outsize = te_dataset.dataset.info_by_scan[_scan_id]["array_size"]
outsize = (te_dataset.dataset.image_size, te_dataset.dataset.image_size, outsize[0]) # original image read by itk: Z, H, W, in prediction we use H, W, Z
_pred = np.zeros( outsize )
_pred.fill(np.nan)
_conf_buffer[_scan_id] = []
_has_label_buffer[_scan_id] = []
q_part = sample_batched["part_assign"] # the chunck of query, for assignment with support
query_images = [sample_batched['image'].cuda()]
query_labels = torch.cat([ sample_batched['label'].cuda()], dim=0)
# if not 1 in query_labels:
# continue
# [way, [part, [shot x C x H x W]]] ->
query_pred, query_pred_logits = validation_single_slice(model, support_images, support_fg_mask, support_bg_mask, query_images, _config, q_part=q_part)
_pred[..., ii] = query_pred.copy()
if 1 in query_labels:
_has_label_buffer[_scan_id].append(True)
else:
_has_label_buffer[_scan_id].append(False)
if get_confidence:
# calc condfidence from logits and log it in the _conf_buffer
query_conf = get_confidence_from_logits(query_pred_logits, query_pred)
_conf_buffer[_scan_id].append(query_conf)
if mar_val_metric_node is not None and ((sample_batched["z_id"] - sample_batched["z_max"] <= _config['z_margin']) and (sample_batched["z_id"] - sample_batched["z_min"] >= -1 * _config['z_margin'])):
mar_val_metric_node.record(query_pred, np.array(query_labels[0].cpu()), labels=[curr_lb], n_scan=curr_scan_count)
else:
pass
ii += 1
# now check data format
if sample_batched["is_end"]:
if _config['dataset'] != 'C0':
_lb_buffer[_scan_id] = _pred.transpose(2,0,1) # H, W, Z -> to Z H W
else:
_lb_buffer[_scan_id] = _pred
save_pred_buffer[str(curr_lb)] = _lb_buffer
model.train()
return save_pred_buffer, _conf_buffer, _has_label_buffer
def load_config_from_url(url: str) -> str:
with urllib.request.urlopen(url) as f:
return f.read().decode()
def save_pred_gt_fig(query_images, query_pred, query_labels, support_images=None, support_labels=None, path="debug/gt_vs_pred.png"):
fig = plt.figure(figsize=(10, 5 if support_images is None else 10))
ax1 = fig.add_subplot(2 if support_images is not None else 1, 2, 1)
ax1.imshow(query_images[0][0, 1].cpu().numpy())
ax1.imshow(query_labels[0].cpu().numpy(), alpha=0.5)
ax1.set_title("Ground Truth")
ax2 = fig.add_subplot(2 if support_images is not None else 1, 2, 2)
ax2.imshow(query_images[0][0, 1].cpu().numpy())
ax2.imshow(query_pred, alpha=0.5)
ax2.set_title("Prediction")
if support_images is not None:
ax3 = fig.add_subplot(2, 2, 3)
ax3.imshow(support_images[0][0, 1].cpu().numpy())
ax3.imshow(support_labels[0].cpu().numpy(), alpha=0.5)
ax3.set_title("Support")
plt.savefig(path)
plt.close('all')
def plot_heatmap_of_probs(probs, image, path=None):
# normalize image values to be between 0 and 1, assume image doesnt have a specific range
image = (image - image.min()) / (image.max() - image.min())
rgb_image = np.repeat(image[:, :, np.newaxis], 3, axis=2)
# Create a 3D figure
fig = plt.figure()
ax = fig.add_subplot(111)
ax.imshow(rgb_image)
ax.imshow(probs, alpha=0.5)
if path is not None:
fig.savefig(path)
else:
plt.show()
plt.close(fig)
def plot_3d_bar_probabilities(probabilities, labels, image, path=None):
# Create a 3D figure
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# Create a meshgrid of the x and y coordinates
x, y = np.meshgrid(np.arange(probabilities.shape[1]), np.arange(probabilities.shape[0]))
# Flatten the probabilities and labels data and convert them to 1D arrays
z = probabilities.flatten()
c = np.where(labels.flatten() == 1, 'g', 'r')
# normaliize image values to be between 0 and 1, assume image doesnt have a specific range
image = (image - image.min()) / (image.max() - image.min())
rgb_image = np.repeat(image[:, :, np.newaxis], 3, axis=2)
# ax.imshow(rgb_image, extent=[0, probabilities.shape[1], 0, probabilities.shape[0]], alpha=0.5)
# Create the 3D bar plot
ax.plot_surface(x, y, np.zeros_like(x), facecolors=rgb_image)
ax.bar3d(x.ravel(), y.ravel(), np.zeros_like(z), 1, 1, z, color=c, alpha=0.3)
# Set the axis labels
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Probability')
# Show the plot
if path is not None:
fig.savefig(path)
else:
plt.show()
plt.close(fig)
# def plot_3d_bar_probabilities(probabilities, labels, path=None):
# # Create a 3D figure
# fig = plt.figure()
# ax = fig.add_subplot(111, projection='3d')
# # Create a meshgrid of the x and y coordinates
# x, y = np.meshgrid(np.arange(probabilities.shape[1]), np.arange(probabilities.shape[0]))
# # Flatten the probabilities and labels data and convert them to 1D arrays
# z = probabilities.flatten()
# c = np.where(labels.flatten() == 1, 'g', 'r')
# # Create the 3D bar plot
# ax.bar3d(x.ravel(), y.ravel(), np.zeros_like(z), 1, 1, z, color=c)
# # Set the axis labels
# ax.set_xlabel('X')
# ax.set_ylabel('Y')
# ax.set_zlabel('Probability')
# # Show the plot
# if path is not None:
# fig.savefig(path)
# else:
# plt.show()
# plt.close(fig)
# def sliding_window_confidence_segmentation(query_pred_conf:np.array, window_size=3, threshold=0.5):
# """
# query_pred_conf: np.array, shape (B, H, W)
# """
# # slice window across the query_pred_conf, if the window has a mean confidence > 0.5, the center pixel is 1, otherwise 0
# pred = np.zeros_like(query_pred_conf)
# # slice the window
# for i in range(query_pred_conf.shape[-1] - window_size + 1):
# for j in range(query_pred_conf.shape[-2] - window_size + 1):
# window = query_pred_conf[:, i:i+window_size, j:j+window_size]
# if np.mean(window) > threshold:
# pred[:, i+window_size//2, j+window_size//2] = 1
# return pred
def sliding_window_confidence_segmentation(query_pred_conf: np.array, window_size=3, threshold=0.5):
"""
query_pred_conf: np.array, shape (B, H, W)
"""
B, H, W = query_pred_conf.shape
pad = window_size // 2
padded_conf = np.pad(query_pred_conf, ((0, 0), (pad, pad), (pad, pad)), mode='constant')
# Calculate the mean in sliding windows
window_view = np.lib.stride_tricks.sliding_window_view(padded_conf, (B, window_size, window_size))
mean_values = np.mean(window_view, axis=(-1, -2))
pred = (mean_values > threshold).astype(int)
return pred[..., 0]
def get_confidence_from_logits(query_pred_logits: torch.Tensor):
query_probs = query_pred_logits.softmax(1)[:,1].flatten(1)
query_pred = query_probs.clone()
query_pred[query_probs < 0.5] = 0
query_pred[query_probs >= 0.5] = 1
return ((query_probs * query_pred).sum() / (query_pred.sum() + 1e-6)).item()
def choose_threshold_kneedle(p):
'''
p - probabilities of prediction
'''
# use kneed to choose the threshold
# create pdf from x
n_bins = min(100, len(p))
hist, bin_edges = np.histogram(p, bins=n_bins)
pdf = hist / hist.sum()
cdf = np.cumsum(pdf)
x = np.linspace(0, 1, n_bins)
y = cdf
# plot x, y in a fig and save the fig
plt.figure()
plt.plot(x, y)
plt.savefig(f'debug/cdf.png')
plt.figure()
plt.plot(x, pdf)
plt.savefig(f'debug/pdf.png')
plt.close('all')
kneedle = kneed.KneeLocator(x, y, curve='convex', direction='increasing')
# get the value at the knee from the bin_edges
threshold = bin_edges[int(kneedle.knee * n_bins)]
return threshold
def plot_cca_output(cca_output):
for j in range(cca_output[0]):
if j == 0:
continue
plt.figure()
plt.imshow(cca_output[1] == j)
plt.savefig(f'debug/cca_{j}.png')
plt.close('all')
def get_connected_components(query_pred_original, query_pred_logits, return_conf=False):
"""
get all connected components
"""
cca_output = cv2.connectedComponentsWithStats(query_pred_original.astype(np.uint8), connectivity=8) # TODO try 8
# plot_cca_output(cca_output)
if return_conf:
# calc confidence for each connected component
cca_conf = {} # conf by id
query_probs = query_pred_logits.softmax(1)[:,1].cpu().detach().numpy()
for j in range(cca_output[0]):
if j == 0:
cca_conf[0] = 0 # background
continue
cca_conf[j] = ((query_probs.flatten() * (cca_output[1] == j).flatten()).sum() / ((query_pred_original.flatten().sum() + 1e-6))) # take into account the area of the connected component
return cca_output, cca_conf
return cca_output, None
def cca(query_pred_original, query_pred_logits, return_conf=False, return_cc=False):
'''
Performs connected component analysis on the query_pred and returns the most confident connected component
'''
# cca_output = cv2.connectedComponentsWithStats(query_pred_original.astype(np.uint8), connectivity=8) # TODO try 8
# # calc confidence for each connected component
# cca_conf = []
# for j in range(cca_output[0]):
# if j == 0:
# cca_conf.append(0) # background
# continue
# cca_conf.append((query_pred_logits.softmax(1)[:,1].flatten(1).cpu().detach().numpy() * (cca_output[1] == j).flatten()).sum() / ((cca_output[1] == j).flatten().sum() + 1e-6) * ((cca_output[1] == j).flatten().sum() / (query_pred_original.flatten().sum() + 1e-6))) # take into account the area of the connected component
cca_output, cca_conf = get_connected_components(query_pred_original, query_pred_logits, return_conf=True)
# find the most confident connected component, find max conf and its key
max_conf = cca_conf[0]
for k,v in cca_conf.items():
if v > max_conf:
max_conf = v
max_key = k
if max_conf == 0:
# no connected component found, use zeros
query_pred = np.zeros_like(query_pred_original)
else:
# zero out all other connected components
new_cca_output = list(cca_output)
new_cca_output[0] = 2 # bg + fg
new_cca_output[1] = np.where(cca_output[1] != max_key, 0, 1) # binarize the max_key
new_cca_output[2] = cca_output[2][[0, max_key]]
new_cca_output[3] = cca_output[3][[0, max_key]]
cca_output = tuple(new_cca_output)
query_pred = (cca_output[1] == 1).astype(np.uint8)
# convert to binary mask
query_pred = (query_pred > 0).astype(np.uint8)
if return_cc:
return cca_output
query_pred_original = query_pred_original * query_pred
if return_conf:
return query_pred_original, max_conf
return query_pred_original
def set_seed(seed):
"""
Set the random seed
"""
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
CLASS_LABELS = {
'SABS': {
'pa_all': set( [1,2,3,6] ),
0: set([1,6] ), # upper_abdomen: spleen + liver as training, kidneis are testing
1: set( [2,3] ), # lower_abdomen
},
'C0': {
'pa_all': set(range(1, 4)),
0: set([2,3]),
1: set([1,3]),
2: set([1,2]),
},
'CHAOST2': {
'pa_all': set(range(1, 5)),
0: set([1, 4]), # upper_abdomen, leaving kidneies as testing classes
1: set([2, 3]), # lower_abdomen
},
}
def get_bbox(fg_mask, inst_mask):
"""
Get the ground truth bounding boxes
"""
fg_bbox = torch.zeros_like(fg_mask, device=fg_mask.device)
bg_bbox = torch.ones_like(fg_mask, device=fg_mask.device)
inst_mask[fg_mask == 0] = 0
area = torch.bincount(inst_mask.view(-1))
cls_id = area[1:].argmax() + 1
cls_ids = np.unique(inst_mask)[1:]
mask_idx = np.where(inst_mask[0] == cls_id)
y_min = mask_idx[0].min()
y_max = mask_idx[0].max()
x_min = mask_idx[1].min()
x_max = mask_idx[1].max()
fg_bbox[0, y_min:y_max+1, x_min:x_max+1] = 1
for i in cls_ids:
mask_idx = np.where(inst_mask[0] == i)
y_min = max(mask_idx[0].min(), 0)
y_max = min(mask_idx[0].max(), fg_mask.shape[1] - 1)
x_min = max(mask_idx[1].min(), 0)
x_max = min(mask_idx[1].max(), fg_mask.shape[2] - 1)
bg_bbox[0, y_min:y_max+1, x_min:x_max+1] = 0
return fg_bbox, bg_bbox
def t2n(img_t):
"""
torch to numpy regardless of whether tensor is on gpu or memory
"""
if img_t.is_cuda:
return img_t.data.cpu().numpy()
else:
return img_t.data.numpy()
def to01(x_np):
"""
normalize a numpy to 0-1 for visualize
"""
return (x_np - x_np.min()) / (x_np.max() - x_np.min() + 1e-5)
def compose_wt_simple(is_wce, data_name):
"""
Weights for cross-entropy loss
"""
# if is_wce:
# if data_name in ['SABS', 'SABS_Superpix', 'SABS_448', 'SABS_Superpix_448', 'SABS_672', 'SABS_Superpix_672','C0', 'C0_Superpix', 'CHAOST2', 'CHAOST2_Superpix', 'CHAOST2_672', 'CHAOST2_Superpix_672', 'LITS17', 'LITS17_Superpix']:
# return torch.FloatTensor([0.05, 1.0]).cuda()
# else:
# raise NotImplementedError
# else:
# return torch.FloatTensor([1.0, 1.0]).cuda()
return torch.FloatTensor([0.05, 1.0]).cuda()
class CircularList(list):
"""
Helper for spliting training and validation scans
Originally: https://stackoverflow.com/questions/8951020/pythonic-circular-list/8951224
"""
def __getitem__(self, x):
if isinstance(x, slice):
return [self[x] for x in self._rangeify(x)]
index = operator.index(x)
try:
return super().__getitem__(index % len(self))
except ZeroDivisionError:
raise IndexError('list index out of range')
def _rangeify(self, slice):
start, stop, step = slice.start, slice.stop, slice.step
if start is None:
start = 0
if stop is None:
stop = len(self)
if step is None:
step = 1
return range(start, stop, step)
|