File size: 26,281 Bytes
427d150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
"""Util functions

Extended from original PANet code

TODO: move part of dataset configurations to data_utils

"""
import random
import torch
import numpy as np
import operator
import cv2
import matplotlib.pyplot as plt
import kneed
import urllib
from tqdm.auto import tqdm
from sklearn.decomposition import PCA
import torchvision.transforms.functional as F


def plot_connected_components(cca_output, original_image, confidences:dict=None, title="debug/connected_components.png"):
    num_labels, labels, stats, centroids = cca_output
    # Create an output image with random colors for each component
    output_image = np.zeros((labels.shape[0], labels.shape[1], 3), np.uint8)
    for label in range(1, num_labels):  # Start from 1 to skip the background
        mask = labels == label
        output_image[mask] = np.random.randint(0, 255, size=3)

    # Plotting the original and the colored components image
    plt.figure(figsize=(10, 5))
    plt.subplot(121), plt.imshow(original_image), plt.title('Original Image')
    plt.subplot(122), plt.imshow(cv2.cvtColor(output_image, cv2.COLOR_BGR2RGB)), plt.title('Connected Components')
    if confidences is not None:
        # Plot the axes color chart with the confidences, use the same colors as the connected components
        plt.subplot(122)
        scatter = plt.scatter(centroids[:, 0], centroids[:, 1], c=list(confidences.values()), cmap='jet')
        plt.colorbar(scatter)

    plt.savefig(title)
    plt.close()


def reverse_tensor(tensor, original_h, original_w, degrees):
    """

    tensor: tensor of shape (B, C, H, W) to be rotated

    original_h: int - original height of the tensor (after it was rotated)

    original_w: int - original width of the tensor (after it was rotated)

    degrees: int or float - angle in degrees couterclockwise

    """
    _, _, h, w = tensor.shape # this is the shape that we want to return to
    if tensor.shape[-2:] != (original_h, original_w):
        tensor = F.resize(tensor, (original_h, original_w), interpolation=F.InterpolationMode.BILINEAR, antialias=True)
        # print("interpolating")
        
    rotated_tensor = F.rotate(tensor, degrees, expand=False)
    # remove the black padding
    h_remove = abs(h - original_h) // 2
    w_remove = abs(w - original_w) // 2
    if h_remove > 0 and w_remove > 0:
        rotated_tensor = rotated_tensor[:, :, h_remove:-h_remove, w_remove:-w_remove]
    
    return rotated_tensor


def need_softmax(tensor, dim=1):
    return not torch.all(torch.isclose(tensor.sum(dim=dim), torch.ones_like(tensor.sum(dim=dim))) & (tensor >= 0))


def rotate_tensor_no_crop(image_tensor, degrees):
    """

    image_tensor: tensor of shape (B, C, H, W)

    degrees: int or float - angle in degrees couterclockwise

    returns: tensor of shape (B, C, H, W) rotated by degrees,

    """
    if degrees == 0:
        return image_tensor, image_tensor.shape[-2:]
    
    b, c, h, w = image_tensor.shape
    rotated_tensor = F.rotate(image_tensor, degrees, expand=True)
    
    interpolation_mode = F.InterpolationMode.BILINEAR
    if c == 1:
        interpolation_mode = F.InterpolationMode.NEAREST
    resized_tensor = F.resize(rotated_tensor, (h, w), interpolation=interpolation_mode, antialias=True)
         
    return resized_tensor, rotated_tensor.shape[-2:]

def plot_dinov2_fts(img_fts, title="debug/img_fts.png"):
    """

    Using PCA to reduce img_fts to 2D and plot it

    Args:

    img_fts: (B, C, H, W)

    """
    if isinstance(img_fts, torch.Tensor):
        img_fts = img_fts.cpu().detach().numpy()

    B, C, H, W = img_fts.shape
    
    img_fts_reshaped = img_fts.transpose(0, 2, 3, 1).reshape(-1, C)
    
    # Apply PCA to reduce dimensionality from C to 1
    pca = PCA(n_components=1)
    img_fts_pca = pca.fit_transform(img_fts_reshaped)
    
    # Reshape back to (B, 1, H, W)
    img_fts_reduced = img_fts_pca.reshape(B, H, W, 1).transpose(0, 3, 1, 2)
    
    # Plot the B images
    if B == 1:
        fig, ax = plt.subplots(figsize=(5, 5))
        ax.imshow(img_fts_reduced[0, 0])
    else:
        fig, axes = plt.subplots(1, B, figsize=(B*5, 5))
        for i, ax in enumerate(axes.flat):
            ax.imshow(img_fts_reduced[i, 0])
            # ax.axis('off')
    
    plt.tight_layout()
    plt.savefig(title)
    plt.close(fig)


def move_to_device(dict_obj, device='cuda'):
    for key in dict_obj:
        value = dict_obj[key]
        if isinstance(value, torch.Tensor):
            dict_obj[key] = value.to(device)
        elif isinstance(value, list):
            for i, item in enumerate(value):
                if isinstance(item, torch.Tensor):
                    dict_obj[key][i] = item.to(device)


def validation_single_slice(model, support_images, support_fg_mask, support_bg_mask, query_images, _config, q_part=0):
    model.eval()
    
    sup_img_part = [[shot_tensor.unsqueeze(0) for shot_tensor in support_images[0][q_part]]]   # way(1) x shot x [B(1) x C x H x W]
    sup_fgm_part = [[shot_tensor.unsqueeze(0) for shot_tensor in support_fg_mask[0][q_part]]]
    sup_bgm_part = [[shot_tensor.unsqueeze(0) for shot_tensor in support_bg_mask[0][q_part]]]

    with torch.no_grad():
        query_pred_logits, _, _, assign_mats, _, _ = model( sup_img_part , sup_fgm_part, sup_bgm_part, query_images, isval = True, val_wsize = _config["val_wsize"] )

    query_pred = np.array(query_pred_logits.argmax(dim=1)[0].cpu().detach())
            
    if _config['do_cca']:
        query_pred = cca(query_pred, query_pred_logits)
    
    if _config["debug"]:
        # plot the support images, support fg mask, query image, query pred before cca and query pred after cca
        fig, ax = plt.subplots(3, 2, figsize=(15, 10))
        ax[0,0].imshow(support_images[0][q_part][0,0].cpu().numpy(), cmap='gray')
        ax[0,1].imshow(support_fg_mask[0][q_part][0].cpu().numpy(), cmap='gray')
        ax[1,0].imshow(query_images[0][0][0].cpu().numpy(), cmap='gray')
        ax[1,1].imshow(query_pred_logits.argmax(dim=1)[0].cpu().detach().numpy(), cmap='gray')
        ax[2,0].imshow(query_pred, cmap='gray')
        ax[2,1].imshow(query_pred_logits.argmax(dim=1)[0].cpu().detach().numpy(), cmap='gray')
        # remove all ticks
        for axi in ax.flat:
            axi.set_xticks([])
            axi.set_yticks([])
        fig.savefig("debug/cca_before_after.png")
        plt.close(fig)
    
    model.train()
    return query_pred, query_pred_logits

    
def validation_on_scans(model, curr_lb, support_images, support_fg_mask, support_bg_mask, testloader, te_parent, te_dataset, _config, sup_img_indx=1, save_pred_buffer=None):
    if save_pred_buffer is None:
        save_pred_buffer = {}
    lb_buffer = {}
    conf_buffer = {}
    # sup_img_part = [[shot_tensor.unsqueeze(0) for shot_tensor in support_images[0][sup_img_indx]]]   # way(1) x shot x [B(1) x C x H x W]
    # sup_fgm_part = [[shot_tensor.unsqueeze(0) for shot_tensor in support_fg_mask[0][sup_img_indx]]]
    # sup_bgm_part = [[shot_tensor.unsqueeze(0) for shot_tensor in support_bg_mask[0][sup_img_indx]]]
    for scan_idx, sample_batched in enumerate(testloader):
        print(f"Processing scan: {scan_idx + 1} / {len(testloader)}")
        _scan_id = sample_batched["scan_id"][0]
        if _scan_id in te_parent.potential_support_sid: # skip the support scan, don't include that to query
            print(f"Skipping support scan: {_scan_id}") # TODO delete
            continue
                    
        outsize = te_dataset.dataset.info_by_scan[_scan_id]["array_size"]
        outsize = (_config['input_size'][0], _config['input_size'][1], outsize[0]) # original image read by itk: Z, H, W, in prediction we use H, W, Z
        _pred = np.zeros( outsize )
        _pred.fill(np.nan)
        conf_buffer[_scan_id] = []

        query_images = sample_batched['image'].cuda()
        z_min = sample_batched['z_min'][0]
        z_max = sample_batched['z_max'][0]
        # create an index list that starts with s_idx goes down to 0, then concat the indices from s_idx + 1 to the end
        # this is to make sure that the most similiar slice is the first one to be processed
        indices = list(range(len(query_images[0])))
        qpart = sup_img_indx 
        for idx, i in enumerate(tqdm(indices)):
            if _config["use_3_slices"]:
                # change the query to 3 slices (-1, 0, 1)
                if i == 0:
                    prev_q = torch.zeros_like(query_images[0, i]).unsqueeze(0)
                else:
                    prev_q = query_images[0, i - 1].unsqueeze(0)
                if i == len(query_images[0]) - 1:
                    next_q = torch.zeros_like(query_images[0, i]).unsqueeze(0)
                else:
                    next_q = query_images[0, i + 1].unsqueeze(0)
                                
                query = torch.cat([prev_q, query_images[0, i].unsqueeze(0), next_q], dim=1)
                            
            else:
                query = query_images[0, i].unsqueeze(0)

            
            query_pred, query_pred_logits = validation_single_slice(model, support_images, support_fg_mask, support_bg_mask, [query], _config, q_part=qpart)
            query_conf = get_confidence_from_logits(query_pred_logits, query_pred)
            conf_buffer[_scan_id].append(query_conf)
            _pred[..., i] = query_pred.copy()
        
        if _config['dataset'] != 'C0':
            lb_buffer[_scan_id] = _pred.transpose(2,0,1)
        else:
            lb_buffer[_scan_id] = _pred
    save_pred_buffer[str(curr_lb)] = lb_buffer
    
    return save_pred_buffer, conf_buffer
            
            
            
def validation(model, curr_lb, testloader, te_parent, te_dataset, _config, support_images, support_fg_mask, support_bg_mask, mar_val_metric_node=None, save_pred_buffer=None, do_validation=False, get_confidence=False):
    model.eval()
    with torch.no_grad():
        curr_scan_count = -1 # counting for current scan
        _lb_buffer = {} # indexed by scan
        _conf_buffer = {} # indexed by scan
        _has_label_buffer = {} # indexed by scan
        last_qpart = 0 # used as indicator for adding result to buffer

        for idx, sample_batched in enumerate(tqdm(testloader)):
            _scan_id = sample_batched["scan_id"][0] # we assume batch size for query is 1
            if _scan_id in te_parent.potential_support_sid: # skip the support scan, don't include that to query
                continue
            if sample_batched["is_start"]:
                ii = 0
                curr_scan_count += 1
                if do_validation:
                    if curr_scan_count > 0:
                        break
                print(f"Processing scan {curr_scan_count + 1} / {len(te_dataset.dataset.pid_curr_load)}")
                _scan_id = sample_batched["scan_id"][0]
                outsize = te_dataset.dataset.info_by_scan[_scan_id]["array_size"]
                outsize = (te_dataset.dataset.image_size, te_dataset.dataset.image_size, outsize[0]) # original image read by itk: Z, H, W, in prediction we use H, W, Z
                _pred = np.zeros( outsize )
                _pred.fill(np.nan)
                _conf_buffer[_scan_id] = []
                _has_label_buffer[_scan_id] = []

            q_part = sample_batched["part_assign"] # the chunck of query, for assignment with support
            query_images = [sample_batched['image'].cuda()]
            query_labels = torch.cat([ sample_batched['label'].cuda()], dim=0)
            # if not 1 in query_labels:
            #     continue
            # [way, [part, [shot x C x H x W]]] ->
            query_pred, query_pred_logits = validation_single_slice(model, support_images, support_fg_mask, support_bg_mask, query_images, _config, q_part=q_part) 
            _pred[..., ii] = query_pred.copy()
            if 1 in query_labels:
                _has_label_buffer[_scan_id].append(True)
            else:
                _has_label_buffer[_scan_id].append(False)
                
            if get_confidence:
                # calc condfidence from logits and log it in the _conf_buffer
                query_conf = get_confidence_from_logits(query_pred_logits, query_pred)
                _conf_buffer[_scan_id].append(query_conf)
            
            if mar_val_metric_node is not None and ((sample_batched["z_id"] - sample_batched["z_max"] <= _config['z_margin']) and (sample_batched["z_id"] - sample_batched["z_min"] >= -1 * _config['z_margin'])):
                mar_val_metric_node.record(query_pred, np.array(query_labels[0].cpu()), labels=[curr_lb], n_scan=curr_scan_count) 
            else:
                pass

            ii += 1
            # now check data format
            if sample_batched["is_end"]:
                if _config['dataset'] != 'C0':
                    _lb_buffer[_scan_id] = _pred.transpose(2,0,1) # H, W, Z -> to Z H W
                else:
                    _lb_buffer[_scan_id] = _pred

        save_pred_buffer[str(curr_lb)] = _lb_buffer
    
    model.train()
    
    return save_pred_buffer, _conf_buffer, _has_label_buffer


def load_config_from_url(url: str) -> str:
    with urllib.request.urlopen(url) as f:
        return f.read().decode()


def save_pred_gt_fig(query_images, query_pred, query_labels, support_images=None, support_labels=None, path="debug/gt_vs_pred.png"):
    fig = plt.figure(figsize=(10, 5 if support_images is None else 10))
    ax1 = fig.add_subplot(2 if support_images is not None else 1, 2, 1)
    ax1.imshow(query_images[0][0, 1].cpu().numpy())
    ax1.imshow(query_labels[0].cpu().numpy(), alpha=0.5)
    ax1.set_title("Ground Truth")
    ax2 = fig.add_subplot(2 if support_images is not None else 1, 2, 2)
    ax2.imshow(query_images[0][0, 1].cpu().numpy())
    ax2.imshow(query_pred, alpha=0.5)
    ax2.set_title("Prediction")
    if support_images is not None:
        ax3 = fig.add_subplot(2, 2, 3)
        ax3.imshow(support_images[0][0, 1].cpu().numpy())
        ax3.imshow(support_labels[0].cpu().numpy(), alpha=0.5)
        ax3.set_title("Support")
    plt.savefig(path)
    plt.close('all')
    
    
def plot_heatmap_of_probs(probs, image, path=None):
    # normalize image values to be between 0 and 1, assume image doesnt have a specific range
    image = (image - image.min()) / (image.max() - image.min())
    rgb_image = np.repeat(image[:, :, np.newaxis], 3, axis=2)
    # Create a 3D figure
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.imshow(rgb_image)
    ax.imshow(probs, alpha=0.5)
    if path is not None:
        fig.savefig(path)
    else:
        plt.show()
    plt.close(fig)
    

def plot_3d_bar_probabilities(probabilities, labels, image, path=None):
    # Create a 3D figure
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')

    # Create a meshgrid of the x and y coordinates
    x, y = np.meshgrid(np.arange(probabilities.shape[1]), np.arange(probabilities.shape[0]))

    # Flatten the probabilities and labels data and convert them to 1D arrays
    z = probabilities.flatten()
    c = np.where(labels.flatten() == 1, 'g', 'r')

    # normaliize image values to be between 0 and 1, assume image doesnt have a specific range
    image = (image - image.min()) / (image.max() - image.min())
    rgb_image = np.repeat(image[:, :, np.newaxis], 3, axis=2)
    # ax.imshow(rgb_image, extent=[0, probabilities.shape[1], 0, probabilities.shape[0]], alpha=0.5)

    # Create the 3D bar plot
    ax.plot_surface(x, y, np.zeros_like(x), facecolors=rgb_image)
    ax.bar3d(x.ravel(), y.ravel(), np.zeros_like(z), 1, 1, z, color=c, alpha=0.3)

    # Set the axis labels
    ax.set_xlabel('X')
    ax.set_ylabel('Y')
    ax.set_zlabel('Probability')

    # Show the plot
    if path is not None:
        fig.savefig(path)
    else:
        plt.show()
    plt.close(fig)

# def plot_3d_bar_probabilities(probabilities, labels, path=None):
#     # Create a 3D figure
#     fig = plt.figure()
#     ax = fig.add_subplot(111, projection='3d')

#     # Create a meshgrid of the x and y coordinates
#     x, y = np.meshgrid(np.arange(probabilities.shape[1]), np.arange(probabilities.shape[0]))

#     # Flatten the probabilities and labels data and convert them to 1D arrays
#     z = probabilities.flatten()
#     c = np.where(labels.flatten() == 1, 'g', 'r')

#     # Create the 3D bar plot
#     ax.bar3d(x.ravel(), y.ravel(), np.zeros_like(z), 1, 1, z, color=c)

#     # Set the axis labels
#     ax.set_xlabel('X')
#     ax.set_ylabel('Y')
#     ax.set_zlabel('Probability')

#     # Show the plot
#     if path is not None:
#         fig.savefig(path)
#     else:
#         plt.show()
#     plt.close(fig)


# def sliding_window_confidence_segmentation(query_pred_conf:np.array, window_size=3, threshold=0.5):
#     """
#     query_pred_conf: np.array, shape (B, H, W)
#     """
#     # slice window across the query_pred_conf, if the window has a mean confidence > 0.5, the center pixel is 1, otherwise 0
    
#     pred = np.zeros_like(query_pred_conf)
#     # slice the window
#     for i in range(query_pred_conf.shape[-1] - window_size + 1):
#         for j in range(query_pred_conf.shape[-2] - window_size + 1):
#             window = query_pred_conf[:, i:i+window_size, j:j+window_size]
#             if np.mean(window) > threshold:
#                 pred[:, i+window_size//2, j+window_size//2] = 1
    
#     return pred


def sliding_window_confidence_segmentation(query_pred_conf: np.array, window_size=3, threshold=0.5):
    """

    query_pred_conf: np.array, shape (B, H, W)

    """
    B, H, W = query_pred_conf.shape
    pad = window_size // 2
    padded_conf = np.pad(query_pred_conf, ((0, 0), (pad, pad), (pad, pad)), mode='constant')

    # Calculate the mean in sliding windows
    window_view = np.lib.stride_tricks.sliding_window_view(padded_conf, (B, window_size, window_size))
    mean_values = np.mean(window_view, axis=(-1, -2))

    pred = (mean_values > threshold).astype(int)

    return pred[..., 0]
 
    

def get_confidence_from_logits(query_pred_logits: torch.Tensor):
    query_probs = query_pred_logits.softmax(1)[:,1].flatten(1)
    query_pred = query_probs.clone()
    query_pred[query_probs < 0.5] = 0
    query_pred[query_probs >= 0.5] = 1
    return ((query_probs * query_pred).sum() / (query_pred.sum() + 1e-6)).item()    

def choose_threshold_kneedle(p):
    '''

    p - probabilities of prediction

    '''
    # use kneed to choose the threshold
    # create pdf from x
    n_bins = min(100, len(p))
    hist, bin_edges = np.histogram(p, bins=n_bins)
    pdf = hist / hist.sum()
    cdf = np.cumsum(pdf)
    
    x = np.linspace(0, 1, n_bins)
    y = cdf
    # plot x, y in a fig and save the fig
    plt.figure()
    plt.plot(x, y)
    plt.savefig(f'debug/cdf.png')
    plt.figure()
    plt.plot(x, pdf)
    plt.savefig(f'debug/pdf.png')
    plt.close('all')
    kneedle = kneed.KneeLocator(x, y, curve='convex', direction='increasing')
    # get the value at the knee from the bin_edges
    threshold = bin_edges[int(kneedle.knee * n_bins)]
    
    return threshold

    
def plot_cca_output(cca_output):
    for j in range(cca_output[0]):
        if j == 0:
            continue
        plt.figure()
        plt.imshow(cca_output[1] == j)
        plt.savefig(f'debug/cca_{j}.png')
        plt.close('all')


def get_connected_components(query_pred_original, query_pred_logits, return_conf=False):
    """

    get all connected components

    """
    cca_output = cv2.connectedComponentsWithStats(query_pred_original.astype(np.uint8), connectivity=8) # TODO try 8
    
    # plot_cca_output(cca_output)    
    
    if return_conf:
        # calc confidence for each connected component
        cca_conf = {} # conf by id
        query_probs = query_pred_logits.softmax(1)[:,1].cpu().detach().numpy()
        for j in range(cca_output[0]):
            if j == 0:
                cca_conf[0] = 0 # background
                continue
            cca_conf[j] = ((query_probs.flatten() * (cca_output[1] == j).flatten()).sum()  / ((query_pred_original.flatten().sum() + 1e-6))) # take into account the area of the connected component
        
        return cca_output, cca_conf
    
    return cca_output, None

def cca(query_pred_original, query_pred_logits, return_conf=False, return_cc=False):
    '''

    Performs connected component analysis on the query_pred and returns the most confident connected component

    '''
    # cca_output = cv2.connectedComponentsWithStats(query_pred_original.astype(np.uint8), connectivity=8) # TODO try 8
    # # calc confidence for each connected component
    # cca_conf = []
    # for j in range(cca_output[0]):
    #     if j == 0:
    #         cca_conf.append(0) # background
    #         continue
    #     cca_conf.append((query_pred_logits.softmax(1)[:,1].flatten(1).cpu().detach().numpy() * (cca_output[1] == j).flatten()).sum() / ((cca_output[1] == j).flatten().sum() + 1e-6) * ((cca_output[1] == j).flatten().sum() / (query_pred_original.flatten().sum() + 1e-6))) # take into account the area of the connected component
    cca_output, cca_conf = get_connected_components(query_pred_original, query_pred_logits, return_conf=True)
    
    # find the most confident connected component, find max conf and its key
    max_conf = cca_conf[0]
    for k,v in cca_conf.items():
        if v > max_conf:
            max_conf = v
            max_key = k
        
    if max_conf == 0:
        # no connected component found, use zeros
        query_pred = np.zeros_like(query_pred_original)
    else:
        # zero out all other connected components
        new_cca_output = list(cca_output)
        new_cca_output[0] = 2  # bg + fg
        new_cca_output[1] = np.where(cca_output[1] != max_key, 0, 1)  # binarize the max_key
        new_cca_output[2] = cca_output[2][[0, max_key]]
        new_cca_output[3] = cca_output[3][[0, max_key]]
        cca_output = tuple(new_cca_output)

        query_pred = (cca_output[1] == 1).astype(np.uint8)
        # convert to binary mask
        query_pred = (query_pred > 0).astype(np.uint8) 
    
    if return_cc:
        return cca_output
    
    query_pred_original = query_pred_original * query_pred
    
    if return_conf:
        return query_pred_original, max_conf
    
    return query_pred_original

def set_seed(seed):
    """

    Set the random seed

    """
    random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)

CLASS_LABELS = {
    'SABS': {
        'pa_all': set( [1,2,3,6]  ),
        0: set([1,6]  ), # upper_abdomen: spleen + liver as training, kidneis are testing
        1: set( [2,3] ), # lower_abdomen
    },
    'C0': {
        'pa_all': set(range(1, 4)),
        0: set([2,3]),
        1: set([1,3]),
        2: set([1,2]),
    },
    'CHAOST2': {
        'pa_all': set(range(1, 5)),
        0: set([1, 4]), # upper_abdomen, leaving kidneies as testing classes
        1: set([2, 3]), # lower_abdomen
    },
}

def get_bbox(fg_mask, inst_mask):
    """

    Get the ground truth bounding boxes

    """

    fg_bbox = torch.zeros_like(fg_mask, device=fg_mask.device)
    bg_bbox = torch.ones_like(fg_mask, device=fg_mask.device)

    inst_mask[fg_mask == 0] = 0
    area = torch.bincount(inst_mask.view(-1))
    cls_id = area[1:].argmax() + 1
    cls_ids = np.unique(inst_mask)[1:]

    mask_idx = np.where(inst_mask[0] == cls_id)
    y_min = mask_idx[0].min()
    y_max = mask_idx[0].max()
    x_min = mask_idx[1].min()
    x_max = mask_idx[1].max()
    fg_bbox[0, y_min:y_max+1, x_min:x_max+1] = 1

    for i in cls_ids:
        mask_idx = np.where(inst_mask[0] == i)
        y_min = max(mask_idx[0].min(), 0)
        y_max = min(mask_idx[0].max(), fg_mask.shape[1] - 1)
        x_min = max(mask_idx[1].min(), 0)
        x_max = min(mask_idx[1].max(), fg_mask.shape[2] - 1)
        bg_bbox[0, y_min:y_max+1, x_min:x_max+1] = 0
    return fg_bbox, bg_bbox

def t2n(img_t):
    """

    torch to numpy regardless of whether tensor is on gpu or memory

    """
    if img_t.is_cuda:
        return img_t.data.cpu().numpy()
    else:
        return img_t.data.numpy()

def to01(x_np):
    """

    normalize a numpy to 0-1 for visualize

    """
    return (x_np - x_np.min()) / (x_np.max() - x_np.min() + 1e-5)

def compose_wt_simple(is_wce, data_name):
    """

    Weights for cross-entropy loss

    """
    # if is_wce:
    #     if data_name in ['SABS', 'SABS_Superpix', 'SABS_448', 'SABS_Superpix_448', 'SABS_672', 'SABS_Superpix_672','C0', 'C0_Superpix', 'CHAOST2', 'CHAOST2_Superpix', 'CHAOST2_672', 'CHAOST2_Superpix_672', 'LITS17', 'LITS17_Superpix']:
    #         return torch.FloatTensor([0.05, 1.0]).cuda()
    #     else:
    #         raise NotImplementedError
    # else:
    #     return torch.FloatTensor([1.0, 1.0]).cuda()
    return torch.FloatTensor([0.05, 1.0]).cuda()


class CircularList(list):
    """

    Helper for spliting training and validation scans

    Originally: https://stackoverflow.com/questions/8951020/pythonic-circular-list/8951224

    """
    def __getitem__(self, x):
        if isinstance(x, slice):
            return [self[x] for x in self._rangeify(x)]

        index = operator.index(x)
        try:
            return super().__getitem__(index % len(self))
        except ZeroDivisionError:
            raise IndexError('list index out of range')

    def _rangeify(self, slice):
        start, stop, step = slice.start, slice.stop, slice.step
        if start is None:
            start = 0
        if stop is None:
            stop = len(self)
        if step is None:
            step = 1
        return range(start, stop, step)