Spaces:
Sleeping
Sleeping
File size: 9,980 Bytes
427d150 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
"""
Training the model
Extended from original implementation of ALPNet.
"""
from scipy.ndimage import distance_transform_edt as eucl_distance
import os
import shutil
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import MultiStepLR
import numpy as np
from models.grid_proto_fewshot import FewShotSeg
from torch.utils.tensorboard import SummaryWriter
from dataloaders.dev_customized_med import med_fewshot
from dataloaders.GenericSuperDatasetv2 import SuperpixelDataset
import dataloaders.augutils as myaug
from util.utils import set_seed, t2n, to01, compose_wt_simple
from util.metric import Metric
from config_ssl_upload import ex
from tqdm.auto import tqdm
# import Tensor
from torch import Tensor
from typing import List, Tuple, Union, cast, Iterable, Set, Any, Callable, TypeVar
def get_dice_loss(prediction: torch.Tensor, target: torch.Tensor, smooth=1.0):
'''
prediction: (B, 1, H, W)
target: (B, H, W)
'''
if prediction.shape[1] > 1:
# use only the foreground prediction
prediction = prediction[:, 1, :, :]
prediction = torch.sigmoid(prediction)
intersection = (prediction * target).sum(dim=(-2, -1))
union = prediction.sum(dim=(-2, -1)) + target.sum(dim=(1, 2)) + smooth
dice = (2.0 * intersection + smooth) / union
dice_loss = 1.0 - dice.mean()
return dice_loss
def get_train_transforms(_config):
tr_transforms = myaug.transform_with_label(
{'aug': myaug.get_aug(_config['which_aug'], _config['input_size'][0])})
return tr_transforms
def get_dataset_base_name(data_name):
if data_name == 'SABS_Superpix':
baseset_name = 'SABS'
elif data_name == 'C0_Superpix':
raise NotImplementedError
baseset_name = 'C0'
elif data_name == 'CHAOST2_Superpix':
baseset_name = 'CHAOST2'
elif data_name == 'CHAOST2_Superpix_672':
baseset_name = 'CHAOST2'
elif data_name == 'SABS_Superpix_448':
baseset_name = 'SABS'
elif data_name == 'SABS_Superpix_672':
baseset_name = 'SABS'
elif 'lits' in data_name.lower():
baseset_name = 'LITS17'
else:
raise ValueError(f'Dataset: {data_name} not found')
return baseset_name
def get_nii_dataset(_config):
data_name = _config['dataset']
baseset_name = get_dataset_base_name(data_name)
tr_transforms = get_train_transforms(_config)
tr_parent = SuperpixelDataset( # base dataset
which_dataset=baseset_name,
base_dir=_config['path'][data_name]['data_dir'],
idx_split=_config['eval_fold'],
mode='train',
# dummy entry for superpixel dataset
min_fg=str(_config["min_fg_data"]),
image_size=_config["input_size"][0],
transforms=tr_transforms,
nsup=_config['task']['n_shots'],
scan_per_load=_config['scan_per_load'],
exclude_list=_config["exclude_cls_list"],
superpix_scale=_config["superpix_scale"],
fix_length=_config["max_iters_per_load"] if (data_name == 'C0_Superpix') or (
data_name == 'CHAOST2_Superpix') else _config["max_iters_per_load"],
use_clahe=_config['use_clahe'],
use_3_slices=_config["use_3_slices"],
tile_z_dim=3 if not _config["use_3_slices"] else 1,
)
return tr_parent
def get_dataset(_config):
return get_nii_dataset(_config)
@ex.automain
def main(_run, _config, _log):
precision = torch.float32
torch.autograd.set_detect_anomaly(True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if _run.observers:
os.makedirs(f'{_run.observers[0].dir}/snapshots', exist_ok=True)
for source_file, _ in _run.experiment_info['sources']:
os.makedirs(os.path.dirname(f'{_run.observers[0].dir}/source/{source_file}'),
exist_ok=True)
_run.observers[0].save_file(source_file, f'source/{source_file}')
shutil.rmtree(f'{_run.observers[0].basedir}/_sources')
set_seed(_config['seed'])
writer = SummaryWriter(f'{_run.observers[0].dir}/logs')
_log.info('###### Create model ######')
if _config['reload_model_path'] != '':
_log.info(f'###### Reload model {_config["reload_model_path"]} ######')
else:
_config['reload_model_path'] = None
model = FewShotSeg(image_size=_config['input_size'][0], pretrained_path=_config['reload_model_path'], cfg=_config['model'])
model = model.to(device, precision)
model.train()
_log.info('###### Load data ######')
data_name = _config['dataset']
tr_parent = get_dataset(_config)
# dataloaders
trainloader = DataLoader(
tr_parent,
batch_size=_config['batch_size'],
shuffle=True,
num_workers=_config['num_workers'],
pin_memory=True,
drop_last=True
)
_log.info('###### Set optimizer ######')
if _config['optim_type'] == 'sgd':
optimizer = torch.optim.SGD(model.parameters(), **_config['optim'])
elif _config['optim_type'] == 'adam':
optimizer = torch.optim.AdamW(
model.parameters(), lr=_config['lr'], eps=1e-5)
else:
raise NotImplementedError
scheduler = MultiStepLR(
optimizer, milestones=_config['lr_milestones'], gamma=_config['lr_step_gamma'])
my_weight = compose_wt_simple(_config["use_wce"], data_name)
criterion = nn.CrossEntropyLoss(
ignore_index=_config['ignore_label'], weight=my_weight)
i_iter = 0 # total number of iteration
# number of times for reloading
n_sub_epoches = max(1, _config['n_steps'] // _config['max_iters_per_load'], _config["epochs"])
log_loss = {'loss': 0, 'align_loss': 0}
_log.info('###### Training ######')
epoch_losses = []
for sub_epoch in range(1):
print(f"Epoch: {sub_epoch}")
_log.info(
f'###### This is epoch {sub_epoch} of {n_sub_epoches} epoches ######')
pbar = tqdm(trainloader)
optimizer.zero_grad()
for idx, sample_batched in enumerate(tqdm(trainloader)):
losses = []
i_iter += 1
support_images = [[shot.to(device, precision) for shot in way]
for way in sample_batched['support_images']]
support_fg_mask = [[shot[f'fg_mask'].float().to(device, precision) for shot in way]
for way in sample_batched['support_mask']]
support_bg_mask = [[shot[f'bg_mask'].float().to(device, precision) for shot in way]
for way in sample_batched['support_mask']]
query_images = [query_image.to(device, precision)
for query_image in sample_batched['query_images']]
query_labels = torch.cat(
[query_label.long().to(device) for query_label in sample_batched['query_labels']], dim=0)
loss = 0.0
try:
out = model(support_images, support_fg_mask, support_bg_mask,
query_images, isval=False, val_wsize=None)
query_pred, align_loss, _, _, _, _, _ = out
# pred = np.array(query_pred.argmax(dim=1)[0].cpu())
except Exception as e:
print(f'faulty batch detected, skip: {e}')
# offload cuda memory
del support_images, support_fg_mask, support_bg_mask, query_images, query_labels
continue
query_loss = criterion(query_pred.float(), query_labels.long())
loss += query_loss + align_loss
pbar.set_postfix({'loss': loss.item()})
loss.backward()
if (idx + 1) % _config['grad_accumulation_steps'] == 0:
optimizer.step()
optimizer.zero_grad()
scheduler.step()
losses.append(loss.item())
query_loss = query_loss.detach().data.cpu().numpy()
align_loss = align_loss.detach().data.cpu().numpy() if align_loss != 0 else 0
_run.log_scalar('loss', query_loss)
_run.log_scalar('align_loss', align_loss)
log_loss['loss'] += query_loss
log_loss['align_loss'] += align_loss
# print loss and take snapshots
if (i_iter + 1) % _config['print_interval'] == 0:
writer.add_scalar('loss', loss, i_iter)
writer.add_scalar('query_loss', query_loss, i_iter)
writer.add_scalar('align_loss', align_loss, i_iter)
loss = log_loss['loss'] / _config['print_interval']
align_loss = log_loss['align_loss'] / _config['print_interval']
log_loss['loss'] = 0
log_loss['align_loss'] = 0
print(
f'step {i_iter+1}: loss: {loss}, align_loss: {align_loss},')
if (i_iter + 1) % _config['save_snapshot_every'] == 0:
_log.info('###### Taking snapshot ######')
torch.save(model.state_dict(),
os.path.join(f'{_run.observers[0].dir}/snapshots', f'{i_iter + 1}.pth'))
if (i_iter - 1) >= _config['n_steps']:
break # finish up
epoch_losses.append(np.mean(losses))
print(f"Epoch {sub_epoch} loss: {np.mean(losses)}")
# Save the final model regardless of iteration count
_log.info('###### Saving final model ######')
final_save_path = os.path.join(f'{_run.observers[0].dir}/snapshots', f'final_model.pth')
torch.save(model.state_dict(), final_save_path)
print(f"Final model saved to: {final_save_path}")
|