File size: 5,853 Bytes
427d150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import numpy as np
import torch
from torch.nn import functional as F
from torchvision.transforms.functional import resize, to_pil_image  # type: ignore
from typing import List

from copy import deepcopy
from typing import Tuple


class ResizeLongestSide:
    """

    Resizes images to the longest side 'target_length', as well as provides

    methods for resizing coordinates and boxes. Provides methods for

    transforming both numpy array and batched torch tensors.

    """

    def __init__(self, target_length: int,

                pixel_mean: List[float] = [123.675, 116.28, 103.53],

                pixel_std: List[float] = [58.395, 57.12, 57.375],) -> None:
        
        self.target_length = target_length
        self.pixel_mean = torch.Tensor(pixel_mean).view(-1, 1, 1)
        self.pixel_std = torch.Tensor(pixel_std).view(-1, 1, 1)


    def apply_image(self, image: np.ndarray) -> np.ndarray:
        """

        Expects a numpy array with shape HxWxC in uint8 format.

        """
        target_size = self.get_preprocess_shape(image.shape[0], image.shape[1], self.target_length)
        return np.array(resize(to_pil_image(image), target_size))

    def apply_coords(self, coords: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray:
        """

        Expects a numpy array of length 2 in the final dimension. Requires the

        original image size in (H, W) format.

        """
        old_h, old_w = original_size
        new_h, new_w = self.get_preprocess_shape(
            original_size[0], original_size[1], self.target_length
        )
        coords = deepcopy(coords).astype(float)
        coords[..., 0] = coords[..., 0] * (new_w / old_w)
        coords[..., 1] = coords[..., 1] * (new_h / old_h)
        return coords

    def apply_boxes(self, boxes: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray:
        """

        Expects a numpy array shape Bx4. Requires the original image size

        in (H, W) format.

        """
        boxes = self.apply_coords(boxes.reshape(-1, 2, 2), original_size)
        return boxes.reshape(-1, 4)

    def apply_image_torch(self, image: torch.Tensor) -> torch.Tensor:
        """

        Expects batched images with shape BxCxHxW and float format. This

        transformation may not exactly match apply_image. apply_image is

        the transformation expected by the model.

        """
        # Expects an image in BCHW format. May not exactly match apply_image.
        target_size = self.get_preprocess_shape(image.shape[-2], image.shape[-1], self.target_length)
        if len(image.shape) == 3:
            image = image.unsqueeze(0)
            image = F.interpolate(
                                    image, target_size,
                                    mode="bilinear", 
                                    align_corners=False, 
                                    antialias=True
                                    )
            return image.squeeze(0)
        elif len(image.shape) == 2:
            image = image.unsqueeze(0).unsqueeze(0)
            image = F.interpolate(
                                    image, target_size,
                                    mode="bilinear", 
                                    align_corners=False, 
                                    antialias=True
                                    )
            return image.squeeze(0).squeeze(0)
        
        else:
            return F.interpolate(
                image, target_size, mode="bilinear", align_corners=False, antialias=True
            )
    
    def preprocess(self, x: torch.Tensor) -> torch.Tensor:
        """Normalize pixel values and pad to a square input."""
        # Normalize colors
        if len(x.shape)==2:
            pass
        else:
            device = x.device
            x = (x - self.pixel_mean.to(device)) / self.pixel_std.to(device) # TODO uncomment this
            # x = x / 255
            pass

        # Pad
        h, w = x.shape[-2:]
        padh = self.target_length - h
        padw = self.target_length - w
        x = F.pad(x, (0, padw, 0, padh))
        return x
    

    def apply_coords_torch(

        self, coords: torch.Tensor, original_size: Tuple[int, ...]

    ) -> torch.Tensor:
        """

        Expects a torch tensor with length 2 in the last dimension. Requires the

        original image size in (H, W) format.

        """
        old_h, old_w = original_size
        new_h, new_w = self.get_preprocess_shape(
            original_size[0], original_size[1], self.target_length
        )
        coords = deepcopy(coords).to(torch.float)
        coords[..., 0] = coords[..., 0] * (new_w / old_w)
        coords[..., 1] = coords[..., 1] * (new_h / old_h)
        return coords

    def apply_boxes_torch(

        self, boxes: torch.Tensor, original_size: Tuple[int, ...]

    ) -> torch.Tensor:
        """

        Expects a torch tensor with shape Bx4. Requires the original image

        size in (H, W) format.

        """
        boxes = self.apply_coords_torch(boxes.reshape(-1, 2, 2), original_size)
        return boxes.reshape(-1, 4)

    @staticmethod
    def get_preprocess_shape(oldh: int, oldw: int, long_side_length: int) -> Tuple[int, int]:
        """

        Compute the output size given input size and target long side length.

        """
        scale = long_side_length * 1.0 / max(oldh, oldw)
        newh, neww = oldh * scale, oldw * scale
        neww = int(neww + 0.5)
        newh = int(newh + 0.5)
        return (newh, neww)