File size: 21,702 Bytes
427d150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
"""

ALPNet

"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from .alpmodule import MultiProtoAsConv
from .backbone.torchvision_backbones import TVDeeplabRes101Encoder
from util.consts import DEFAULT_FEATURE_SIZE
from util.lora import inject_trainable_lora
# from util.utils import load_config_from_url, plot_dinov2_fts
import math

# Specify a local path to the repository (or use installed package instead)
FG_PROT_MODE = 'gridconv+' # using both local and global prototype
# FG_PROT_MODE = 'mask'
# using local prototype only. Also 'mask' refers to using global prototype only (as done in vanilla PANet)
BG_PROT_MODE = 'gridconv'

# thresholds for deciding class of prototypes
FG_THRESH = 0.95
BG_THRESH = 0.95


class FewShotSeg(nn.Module):
    """

    ALPNet

    Args:

        in_channels:        Number of input channels

        cfg:                Model configurations

    """

    def __init__(self, image_size, pretrained_path=None, cfg=None):
        super(FewShotSeg, self).__init__()
        self.image_size = image_size
        self.pretrained_path = pretrained_path
        print(f'###### Pre-trained path: {self.pretrained_path} ######')
        self.config = cfg or {
            'align': False, 'debug': False}
        self.get_encoder()
        self.get_cls()
        if self.pretrained_path:
            self.load_state_dict(torch.load(self.pretrained_path), strict=True)
            print(
                f'###### Pre-trained model f{self.pretrained_path} has been loaded ######')

    def get_encoder(self):
        self.config['feature_hw'] = [DEFAULT_FEATURE_SIZE,
                                     DEFAULT_FEATURE_SIZE]  # default feature map size
        if self.config['which_model'] == 'dlfcn_res101' or self.config['which_model'] == 'default':
            use_coco_init = self.config['use_coco_init']
            self.encoder = TVDeeplabRes101Encoder(use_coco_init)
            self.config['feature_hw'] = [
                math.ceil(self.image_size/8), math.ceil(self.image_size/8)]
        elif self.config['which_model'] == 'dinov2_l14':
            self.encoder = torch.hub.load(
                'facebookresearch/dinov2', 'dinov2_vitl14')
            self.config['feature_hw'] = [max(
                self.image_size//14, DEFAULT_FEATURE_SIZE), max(self.image_size//14, DEFAULT_FEATURE_SIZE)]
        elif self.config['which_model'] == 'dinov2_l14_reg':
            try:
                self.encoder = torch.hub.load(
                    'facebookresearch/dinov2', 'dinov2_vitl14_reg')
            except RuntimeError as e:
                self.encoder = torch.hub.load(
                    'facebookresearch/dino', 'dinov2_vitl14_reg', force_reload=True)
            self.config['feature_hw'] = [max(
                self.image_size//14, DEFAULT_FEATURE_SIZE), max(self.image_size//14, DEFAULT_FEATURE_SIZE)]
        elif self.config['which_model'] == 'dinov2_b14':
            self.encoder = torch.hub.load(
                'facebookresearch/dinov2', 'dinov2_vitb14')
            self.config['feature_hw'] = [max(
                self.image_size//14, DEFAULT_FEATURE_SIZE), max(self.image_size//14, DEFAULT_FEATURE_SIZE)]
        else:
            raise NotImplementedError(
                f'Backbone network {self.config["which_model"]} not implemented')

        if self.config['lora'] > 0:
            self.encoder.requires_grad_(False)
            print(f'Injecting LoRA with rank:{self.config["lora"]}')
            encoder_lora_params = inject_trainable_lora(
                self.encoder, r=self.config['lora'])

    def get_features(self, imgs_concat):
        if self.config['which_model'] == 'dlfcn_res101':
            img_fts = self.encoder(imgs_concat, low_level=False)
        elif 'dino' in self.config['which_model']:
            # resize imgs_concat to the closest size that is divisble by 14
            imgs_concat = F.interpolate(imgs_concat, size=(
                self.image_size // 14 * 14, self.image_size // 14 * 14), mode='bilinear')
            dino_fts = self.encoder.forward_features(imgs_concat)
            img_fts = dino_fts["x_norm_patchtokens"]  # B, HW, C
            img_fts = img_fts.permute(0, 2, 1)  # B, C, HW
            C, HW = img_fts.shape[-2:]
            img_fts = img_fts.view(-1, C, int(HW**0.5),
                                   int(HW**0.5))  # B, C, H, W
            if HW < DEFAULT_FEATURE_SIZE ** 2:
                img_fts = F.interpolate(img_fts, size=(
                    DEFAULT_FEATURE_SIZE, DEFAULT_FEATURE_SIZE), mode='bilinear')  # this is if h,w < (32,32)
        else:
            raise NotImplementedError(
                f'Backbone network {self.config["which_model"]} not implemented')
        
        return img_fts

    def get_cls(self):
        """

        Obtain the similarity-based classifier

        """
        proto_hw = self.config["proto_grid_size"]

        if self.config['cls_name'] == 'grid_proto':
            embed_dim = 256
            if 'dinov2_b14' in self.config['which_model']:
                embed_dim = 768
            elif 'dinov2_l14' in self.config['which_model']:
                embed_dim = 1024
            self.cls_unit = MultiProtoAsConv(proto_grid=[proto_hw, proto_hw], feature_hw=self.config["feature_hw"], embed_dim=embed_dim)  # when treating it as ordinary prototype
            print(f"cls unit feature hw: {self.cls_unit.feature_hw}")
        else:
            raise NotImplementedError(
                f'Classifier {self.config["cls_name"]} not implemented')

    def forward_resolutions(self, resolutions, supp_imgs, fore_mask, back_mask, qry_imgs, isval, val_wsize, show_viz=False, supp_fts=None):
        predictions = []
        for res in resolutions:
            supp_imgs_resized = [[F.interpolate(supp_img[0], size=(
                res, res), mode='bilinear') for supp_img in supp_imgs]] if supp_imgs[0][0].shape[-1] != res else supp_imgs
            fore_mask_resized = [[F.interpolate(fore_mask_way[0].unsqueeze(0), size=(res, res), mode='bilinear')[
                0] for fore_mask_way in fore_mask]] if fore_mask[0][0].shape[-1] != res else fore_mask
            back_mask_resized = [[F.interpolate(back_mask_way[0].unsqueeze(0), size=(res, res), mode='bilinear')[
                0] for back_mask_way in back_mask]] if back_mask[0][0].shape[-1] != res else back_mask
            qry_imgs_resized = [F.interpolate(qry_img, size=(res, res), mode='bilinear')
                                for qry_img in qry_imgs] if qry_imgs[0][0].shape[-1] != res else qry_imgs

            pred = self.forward(supp_imgs_resized, fore_mask_resized, back_mask_resized,
                                qry_imgs_resized, isval, val_wsize, show_viz, supp_fts)[0]
            predictions.append(pred)

    def resize_inputs_to_image_size(self, supp_imgs, fore_mask, back_mask, qry_imgs):
        supp_imgs = [[F.interpolate(supp_img, size=(
            self.image_size, self.image_size), mode='bilinear') for supp_img in supp_imgs_way] for supp_imgs_way in supp_imgs]
        fore_mask = [[F.interpolate(fore_mask_way[0].unsqueeze(0), size=(self.image_size, self.image_size), mode='bilinear')[
            0] for fore_mask_way in fore_mask]] if fore_mask[0][0].shape[-1] != self.image_size else fore_mask
        back_mask = [[F.interpolate(back_mask_way[0].unsqueeze(0), size=(self.image_size, self.image_size), mode='bilinear')[
            0] for back_mask_way in back_mask]] if back_mask[0][0].shape[-1] != self.image_size else back_mask
        qry_imgs = [F.interpolate(qry_img, size=(self.image_size, self.image_size), mode='bilinear')
                    for qry_img in qry_imgs] if qry_imgs[0][0].shape[-1] != self.image_size else qry_imgs
        return supp_imgs, fore_mask, back_mask, qry_imgs

    def forward(self, supp_imgs, fore_mask, back_mask, qry_imgs, isval, val_wsize, show_viz=False, supp_fts=None):
        """

        Args:

            supp_imgs: support images

                way x shot x [B x 3 x H x W], list of lists of tensors

            fore_mask: foreground masks for support images

                way x shot x [B x H x W], list of lists of tensors

            back_mask: background masks for support images

                way x shot x [B x H x W], list of lists of tensors

            qry_imgs: query images

                N x [B x 3 x H x W], list of tensors

            show_viz: return the visualization dictionary

        """
        # ('Please go through this piece of code carefully')
        # supp_imgs, fore_mask, back_mask, qry_imgs = self.resize_inputs_to_image_size(
        #     supp_imgs, fore_mask, back_mask, qry_imgs)
        
        n_ways = len(supp_imgs)
        n_shots = len(supp_imgs[0])
        n_queries = len(qry_imgs)

        # NOTE: actual shot in support goes in batch dimension
        assert n_ways == 1, "Multi-shot has not been implemented yet"
        assert n_queries == 1

        sup_bsize = supp_imgs[0][0].shape[0]
        img_size = supp_imgs[0][0].shape[-2:]
        if self.config["cls_name"] == 'grid_proto_3d':
            img_size = supp_imgs[0][0].shape[-3:]
        qry_bsize = qry_imgs[0].shape[0]

        imgs_concat = torch.cat([torch.cat(way, dim=0) for way in supp_imgs]
                                + [torch.cat(qry_imgs, dim=0),], dim=0)

        img_fts = self.get_features(imgs_concat)
        if len(img_fts.shape) == 5:  # for 3D
            fts_size = img_fts.shape[-3:]
        else:
            fts_size = img_fts.shape[-2:]
        if supp_fts is None:
            supp_fts = img_fts[:n_ways * n_shots * sup_bsize].view(
                n_ways, n_shots, sup_bsize, -1, *fts_size)  # wa x sh x b x c x h' x w'
            qry_fts = img_fts[n_ways * n_shots * sup_bsize:].view(
                n_queries, qry_bsize, -1, *fts_size)   # N x B x C x H' x W'
        else:
            # N x B x C x H' x W'
            qry_fts = img_fts.view(n_queries, qry_bsize, -1, *fts_size)

        fore_mask = torch.stack([torch.stack(way, dim=0)
                                 for way in fore_mask], dim=0)  # Wa x Sh x B x H' x W'
        fore_mask = torch.autograd.Variable(fore_mask, requires_grad=True)
        back_mask = torch.stack([torch.stack(way, dim=0)
                                 for way in back_mask], dim=0)  # Wa x Sh x B x H' x W'

        ###### Compute loss ######
        align_loss = 0
        outputs = []
        visualizes = []  # the buffer for visualization

        for epi in range(1):  # batch dimension, fixed to 1
            fg_masks = []  # keep the way part

            '''

            for way in range(n_ways):

                # note: index of n_ways starts from 0

                mean_sup_ft = supp_fts[way].mean(dim = 0) # [ nb, C, H, W]. Just assume batch size is 1 as pytorch only allows this

                mean_sup_msk = F.interpolate(fore_mask[way].mean(dim = 0).unsqueeze(1), size = mean_sup_ft.shape[-2:], mode = 'bilinear')

                fg_masks.append( mean_sup_msk )



                mean_bg_msk = F.interpolate(back_mask[way].mean(dim = 0).unsqueeze(1), size = mean_sup_ft.shape[-2:], mode = 'bilinear') # [nb, C, H, W]

            '''
            # re-interpolate support mask to the same size as support feature
            if len(fts_size) == 3:  # TODO make more generic
                res_fg_msk = torch.stack([F.interpolate(fore_mask[0][0].unsqueeze(
                    0), size=fts_size, mode='nearest')], dim=0)  # [nway, ns, nb, nd', nh', nw'])
                res_bg_msk = torch.stack([F.interpolate(back_mask[0][0].unsqueeze(
                    0), size=fts_size, mode='nearest')], dim=0)  # [nway, ns, nb, nd', nh', nw'])
            else:
                res_fg_msk = torch.stack([F.interpolate(fore_mask_w, size=fts_size, mode='nearest')
                                         for fore_mask_w in fore_mask], dim=0)  # [nway, ns, nb, nh', nw']
                res_bg_msk = torch.stack([F.interpolate(back_mask_w, size=fts_size, mode='nearest')
                                         for back_mask_w in back_mask], dim=0)  # [nway, ns, nb, nh', nw']

            scores = []
            assign_maps = []
            bg_sim_maps = []
            fg_sim_maps = []
            bg_mode = BG_PROT_MODE

            _raw_score, _, aux_attr, _ = self.cls_unit(
                qry_fts, supp_fts, res_bg_msk, mode=bg_mode, thresh=BG_THRESH, isval=isval, val_wsize=val_wsize, vis_sim=show_viz)
            scores.append(_raw_score)
            assign_maps.append(aux_attr['proto_assign'])
            
            for way, _msks in enumerate(res_fg_msk):
                raw_scores = []
                for i, _msk in enumerate(_msks):
                    _msk = _msk.unsqueeze(0)
                    supp_ft = supp_fts[:, i].unsqueeze(0)
                    if self.config["cls_name"] == 'grid_proto_3d':  # 3D
                        k_size = self.cls_unit.kernel_size
                        fg_mode = FG_PROT_MODE if F.avg_pool3d(_msk, k_size).max(
                        ) >= FG_THRESH and FG_PROT_MODE != 'mask' else 'mask'  # TODO figure out kernel size
                    else:
                        k_size = self.cls_unit.kernel_size
                        fg_mode = FG_PROT_MODE if F.avg_pool2d(_msk, k_size).max(
                        ) >= FG_THRESH and FG_PROT_MODE != 'mask' else 'mask'
                        # TODO figure out kernel size
                    _raw_score, _, aux_attr, proto_grid = self.cls_unit(qry_fts, supp_ft, _msk.unsqueeze(
                        0), mode=fg_mode, thresh=FG_THRESH, isval=isval, val_wsize=val_wsize, vis_sim=show_viz)
                    raw_scores.append(_raw_score)

                # create a score where each feature is the max of the raw_score
                _raw_score = torch.stack(raw_scores, dim=1).max(dim=1)[
                    0] 
                scores.append(_raw_score)
                assign_maps.append(aux_attr['proto_assign'])
                if show_viz:
                    fg_sim_maps.append(aux_attr['raw_local_sims'])
            # print(f"Time for fg: {time.time() - start_time}")
            pred = torch.cat(scores, dim=1)  # N x (1 + Wa) x H' x W'
            interpolate_mode = 'bilinear'
            outputs.append(F.interpolate(
                pred, size=img_size, mode=interpolate_mode))

            ###### Prototype alignment loss ######
            if self.config['align'] and self.training:
                align_loss_epi = self.alignLoss(qry_fts[:, epi], pred, supp_fts[:, :, epi],
                                                fore_mask[:, :, epi], back_mask[:, :, epi])
                align_loss += align_loss_epi

        output = torch.stack(outputs, dim=1)  # N x B x (1 + Wa) x H x W
        grid_shape = output.shape[2:]
        if self.config["cls_name"] == 'grid_proto_3d':
            grid_shape = output.shape[2:]
        output = output.view(-1, *grid_shape)
        assign_maps = torch.stack(assign_maps, dim=1) if show_viz else None
        bg_sim_maps = torch.stack(bg_sim_maps, dim=1) if show_viz else None
        fg_sim_maps = torch.stack(fg_sim_maps, dim=1) if show_viz else None

        return output, align_loss / sup_bsize, [bg_sim_maps, fg_sim_maps], assign_maps, proto_grid, supp_fts, qry_fts


    def alignLoss(self, qry_fts, pred, supp_fts, fore_mask, back_mask):
        """

        Compute the loss for the prototype alignment branch



        Args:

            qry_fts: embedding features for query images

                expect shape: N x C x H' x W'

            pred: predicted segmentation score

                expect shape: N x (1 + Wa) x H x W

            supp_fts: embedding fatures for support images

                expect shape: Wa x Sh x C x H' x W'

            fore_mask: foreground masks for support images

                expect shape: way x shot x H x W

            back_mask: background masks for support images

                expect shape: way x shot x H x W

        """
        n_ways, n_shots = len(fore_mask), len(fore_mask[0])

        # Masks for getting query prototype
        pred_mask = pred.argmax(dim=1).unsqueeze(0)  # 1 x  N x H' x W'
        binary_masks = [pred_mask == i for i in range(1 + n_ways)]

        # skip_ways = [i for i in range(n_ways) if binary_masks[i + 1].sum() == 0]
        # FIXME: fix this in future we here make a stronger assumption that a positive class must be there to avoid undersegmentation/ lazyness
        skip_ways = []

        # added for matching dimensions to the new data format
        qry_fts = qry_fts.unsqueeze(0).unsqueeze(
            2)  # added to nway(1) and nb(1)
        # end of added part

        loss = []
        for way in range(n_ways):
            if way in skip_ways:
                continue
            # Get the query prototypes
            for shot in range(n_shots):
                # actual local query [way(1), nb(1, nb is now nshot), nc, h, w]
                img_fts = supp_fts[way: way + 1, shot: shot + 1]
                size = img_fts.shape[-2:]
                mode = 'bilinear'
                if self.config["cls_name"] == 'grid_proto_3d':
                    size = img_fts.shape[-3:]
                    mode = 'trilinear'
                qry_pred_fg_msk = F.interpolate(
                    binary_masks[way + 1].float(), size=size, mode=mode)  # [1 (way), n (shot), h, w]

                # background
                qry_pred_bg_msk = F.interpolate(
                    binary_masks[0].float(), size=size, mode=mode)  # 1, n, h ,w
                scores = []

                bg_mode = BG_PROT_MODE
                _raw_score_bg, _, _, _ = self.cls_unit(
                    qry=img_fts, sup_x=qry_fts, sup_y=qry_pred_bg_msk.unsqueeze(-3), mode=bg_mode, thresh=BG_THRESH)

                scores.append(_raw_score_bg)
                if self.config["cls_name"] == 'grid_proto_3d':
                    fg_mode = FG_PROT_MODE if F.avg_pool3d(qry_pred_fg_msk, 4).max(
                    ) >= FG_THRESH and FG_PROT_MODE != 'mask' else 'mask'
                else:
                    fg_mode = FG_PROT_MODE if F.avg_pool2d(qry_pred_fg_msk, 4).max(
                    ) >= FG_THRESH and FG_PROT_MODE != 'mask' else 'mask'
                _raw_score_fg, _, _, _ = self.cls_unit(
                    qry=img_fts, sup_x=qry_fts, sup_y=qry_pred_fg_msk.unsqueeze(2), mode=fg_mode, thresh=FG_THRESH)
                scores.append(_raw_score_fg)

                supp_pred = torch.cat(scores, dim=1)  # N x (1 + Wa) x H' x W'
                size = fore_mask.shape[-2:]
                if self.config["cls_name"] == 'grid_proto_3d':
                    size = fore_mask.shape[-3:]
                supp_pred = F.interpolate(supp_pred, size=size, mode=mode)

                # Construct the support Ground-Truth segmentation
                supp_label = torch.full_like(fore_mask[way, shot], 255,
                                             device=img_fts.device).long()
                supp_label[fore_mask[way, shot] == 1] = 1
                supp_label[back_mask[way, shot] == 1] = 0
                # Compute Loss
                loss.append(F.cross_entropy(
                    supp_pred.float(), supp_label[None, ...], ignore_index=255) / n_shots / n_ways)

        return torch.sum(torch.stack(loss))

    def dino_cls_loss(self, teacher_cls_tokens, student_cls_tokens):
        cls_loss_weight = 0.1
        student_temp = 1
        teacher_cls_tokens = self.sinkhorn_knopp_teacher(teacher_cls_tokens)
        lsm = F.log_softmax(student_cls_tokens / student_temp, dim=-1)
        cls_loss = torch.sum(teacher_cls_tokens * lsm, dim=-1)

        return -cls_loss.mean() * cls_loss_weight

    @torch.no_grad()
    def sinkhorn_knopp_teacher(self, teacher_output, teacher_temp=1, n_iterations=3):
        teacher_output = teacher_output.float()
        # world_size = dist.get_world_size() if dist.is_initialized() else 1
        # Q is K-by-B for consistency with notations from our paper
        Q = torch.exp(teacher_output / teacher_temp).t()
        # B = Q.shape[1] * world_size # number of samples to assign
        B = Q.shape[1]
        K = Q.shape[0]  # how many prototypes

        # make the matrix sums to 1
        sum_Q = torch.sum(Q)
        Q /= sum_Q

        for it in range(n_iterations):
            # normalize each row: total weight per prototype must be 1/K
            sum_of_rows = torch.sum(Q, dim=1, keepdim=True)
            Q /= sum_of_rows
            Q /= K

            # normalize each column: total weight per sample must be 1/B
            Q /= torch.sum(Q, dim=0, keepdim=True)
            Q /= B

        Q *= B  # the columns must sum to 1 so that Q is an assignment
        return Q.t()

    def dino_patch_loss(self, features, masked_features, masks):
        # for both supp and query features perform the patch wise loss
        loss = 0.0
        weight = 0.1
        B = features.shape[0]
        for (f, mf, mask) in zip(features, masked_features, masks):
            # TODO sinkhorn knopp center features
            f = f[mask]
            f = self.sinkhorn_knopp_teacher(f)
            mf = mf[mask]
            loss += torch.sum(f * F.log_softmax(mf / 1,
                              dim=-1), dim=-1) / mask.sum()

        return -loss.sum() * weight / B