File size: 13,080 Bytes
427d150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
"""

Image transforms functions for data augmentation

Credit to Dr. Jo Schlemper

"""

from collections.abc import Sequence
import cv2
import numpy as np
import scipy
from scipy.ndimage.filters import gaussian_filter
from scipy.ndimage.interpolation import map_coordinates
from numpy.lib.stride_tricks import as_strided
import numpy as np
import cv2
from scipy.ndimage import map_coordinates
from numpy.lib.stride_tricks import as_strided
from multiprocessing import Pool
import albumentations as A
import time

###### UTILITIES ######
def random_num_generator(config, random_state=np.random):
    if config[0] == 'uniform':
        ret = random_state.uniform(config[1], config[2], 1)[0]
    elif config[0] == 'lognormal':
        ret = random_state.lognormal(config[1], config[2], 1)[0]
    else:
        #print(config)
        raise Exception('unsupported format')
    return ret

def get_translation_matrix(translation):
    """ translation: [tx, ty] """
    tx, ty = translation
    translation_matrix = np.array([[1, 0, tx],
                                   [0, 1, ty],
                                   [0, 0, 1]])
    return translation_matrix



def get_rotation_matrix(rotation, input_shape, centred=True):
    theta = np.pi / 180 * np.array(rotation)
    if centred:
        rotation_matrix = cv2.getRotationMatrix2D((input_shape[0]/2, input_shape[1]//2), rotation, 1)
        rotation_matrix = np.vstack([rotation_matrix, [0, 0, 1]])
    else:
        rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0],
                                    [np.sin(theta),  np.cos(theta), 0],
                                    [0, 0, 1]])
    return rotation_matrix

def get_zoom_matrix(zoom, input_shape, centred=True):
    zx, zy = zoom
    if centred:
        zoom_matrix = cv2.getRotationMatrix2D((input_shape[0]/2, input_shape[1]//2), 0, zoom[0])
        zoom_matrix = np.vstack([zoom_matrix, [0, 0, 1]])
    else:
        zoom_matrix = np.array([[zx, 0, 0],
                                [0, zy, 0],
                                [0, 0,  1]])
    return zoom_matrix

def get_shear_matrix(shear_angle):
    theta = (np.pi * shear_angle) / 180
    shear_matrix = np.array([[1, -np.sin(theta), 0],
                             [0,  np.cos(theta), 0],
                             [0, 0, 1]])
    return shear_matrix

###### AFFINE TRANSFORM ######
class RandomAffine(object):
    """Apply random affine transformation on a numpy.ndarray (H x W x C)

    Comment by co1818: this is still doing affine on 2d (H x W plane).

                        A same transform is applied to all C channels



    Parameter:

    ----------



    alpha: Range [0, 4] seems good for small images



    order: interpolation method (c.f. opencv)

    """

    def __init__(self,

                 rotation_range=None,

                 translation_range=None,

                 shear_range=None,

                 zoom_range=None,

                 zoom_keep_aspect=False,

                 interp='bilinear',

                 use_3d=False,

                 order=3):
        """

        Perform an affine transforms.



        Arguments

        ---------

        rotation_range : one integer or float

            image will be rotated randomly between (-degrees, degrees)



        translation_range : (x_shift, y_shift)

            shifts in pixels



        *NOT TESTED* shear_range : float

            image will be sheared randomly between (-degrees, degrees)



        zoom_range : (zoom_min, zoom_max)

            list/tuple with two floats between [0, infinity).

            first float should be less than the second

            lower and upper bounds on percent zoom.

            Anything less than 1.0 will zoom in on the image,

            anything greater than 1.0 will zoom out on the image.

            e.g. (0.7, 1.0) will only zoom in,

                 (1.0, 1.4) will only zoom out,

                 (0.7, 1.4) will randomly zoom in or out

        """

        self.rotation_range = rotation_range
        self.translation_range = translation_range
        self.shear_range = shear_range
        self.zoom_range = zoom_range
        self.zoom_keep_aspect = zoom_keep_aspect
        self.interp = interp
        self.order = order
        self.use_3d = use_3d

    def build_M(self, input_shape):
        tfx = []
        final_tfx = np.eye(3)
        if self.rotation_range:
            rot = np.random.uniform(-self.rotation_range, self.rotation_range)
            tfx.append(get_rotation_matrix(rot, input_shape))
        if self.translation_range:
            tx = np.random.uniform(-self.translation_range[0], self.translation_range[0])
            ty = np.random.uniform(-self.translation_range[1], self.translation_range[1])
            tfx.append(get_translation_matrix((tx,ty)))
        if self.shear_range:
            rot = np.random.uniform(-self.shear_range, self.shear_range)
            tfx.append(get_shear_matrix(rot))
        if self.zoom_range:
            sx = np.random.uniform(self.zoom_range[0], self.zoom_range[1])
            if self.zoom_keep_aspect:
                sy = sx
            else:
                sy = np.random.uniform(self.zoom_range[0], self.zoom_range[1])

            tfx.append(get_zoom_matrix((sx, sy), input_shape))

        for tfx_mat in tfx:
            final_tfx = np.dot(tfx_mat, final_tfx)

        return final_tfx.astype(np.float32)

    def __call__(self, image):
        # build matrix
        input_shape = image.shape[:2]
        M = self.build_M(input_shape)

        res = np.zeros_like(image)
        #if isinstance(self.interp, Sequence):
        if type(self.order) is list or type(self.order) is tuple:
            for i, intp in enumerate(self.order):
                if self.use_3d:
                    res[..., i] = affine_transform_3d_via_M(image[..., i], M[:2], interp=intp)
                else:
                    res[..., i] = affine_transform_via_M(image[..., i], M[:2], interp=intp)
        else:
            # squeeze if needed
            orig_shape = image.shape
            image_s = np.squeeze(image)
            if self.use_3d:
                res = affine_transform_3d_via_M(image_s, M[:2], interp=self.order)
            else:
                res = affine_transform_via_M(image_s, M[:2], interp=self.order)
            res = res.reshape(orig_shape)

            #res = affine_transform_via_M(image, M[:2], interp=self.order)

        return res

def affine_transform_via_M(image, M, borderMode=cv2.BORDER_CONSTANT, interp=cv2.INTER_NEAREST):
    imshape = image.shape
    shape_size = imshape[:2]

    # Random affine
    warped = cv2.warpAffine(image.reshape(shape_size + (-1,)), M, shape_size[::-1],
                            flags=interp, borderMode=borderMode)

    #print(imshape, warped.shape)

    warped = warped[..., np.newaxis].reshape(imshape)

    return warped

def affine_transform_3d_via_M(vol, M, borderMode=cv2.BORDER_CONSTANT, interp=cv2.INTER_NEAREST):
    """

    vol should be of shape (nx, ny, n1, ..., nm)

    """
    # go over slice slice
    res = np.zeros_like(vol)
    for i in range(vol.shape[2]):
        res[:, :, i] = affine_transform_via_M(vol[:,:,i], M, borderMode=borderMode, interp=interp)
    
    return res
        

###### ELASTIC TRANSFORM ######
def elastic_transform(image, alpha=1000, sigma=30, spline_order=1, mode='nearest', random_state=np.random):
    """Elastic deformation of image as described in [Simard2003]_.

    .. [Simard2003] Simard, Steinkraus and Platt, "Best Practices for

       Convolutional Neural Networks applied to Visual Document Analysis", in

       Proc. of the International Conference on Document Analysis and

       Recognition, 2003.

    """
    assert image.ndim == 3
    shape = image.shape[:2]

    dx = gaussian_filter((random_state.rand(*shape) * 2 - 1),
                         sigma, mode="constant", cval=0) * alpha
    dy = gaussian_filter((random_state.rand(*shape) * 2 - 1),
                         sigma, mode="constant", cval=0) * alpha

    x, y = np.meshgrid(np.arange(shape[0]), np.arange(shape[1]), indexing='ij')
    indices = [np.reshape(x + dx, (-1, 1)), np.reshape(y + dy, (-1, 1))]
    result = np.empty_like(image)
    for i in range(image.shape[2]):
        result[:, :, i] = map_coordinates(
            image[:, :, i], indices, order=spline_order, mode=mode).reshape(shape)
    return result

def elastic_transform_nd_3d(image, **kwargs):
    """

    image_w_mask should be of shape (nx, ny, nz, 3)

    """
    image_w_mask = image
    start_time = time.time()
    elastic_transform = A.ElasticTransform(alpha=10, sigma=20, alpha_affine=15, interpolation=1, border_mode=4, always_apply=True, p=0.5)
    # print(f"elastic transform initilization took {time.time() - start_time} seconds")
    img = image_w_mask[..., 0]
    label = image_w_mask[..., -1]
    transformed = elastic_transform(image=img, mask=label)
    t_img = transformed['image'][..., np.newaxis]
    t_mask = transformed['mask'][..., np.newaxis]
    t_mask_bg = 1 - t_mask
    t_mask = np.concatenate([t_mask_bg, t_mask], axis=-1)
    
    comp = np.concatenate([t_img, t_mask], axis=-1)
    return comp

def elastic_transform_nd(image, alpha, sigma, random_state=None, order=1, lazy=False):
    """Expects data to be (nx, ny, n1 ,..., nm)

    params:

    ------



    alpha:

    the scaling parameter.

    E.g.: alpha=2 => distorts images up to 2x scaling



    sigma:

    standard deviation of gaussian filter.

    E.g.

         low (sig~=1e-3) => no smoothing, pixelated.

         high (1/5 * imsize) => smooth, more like affine.

         very high (1/2*im_size) => translation

    """

    if random_state is None:
        random_state = np.random.RandomState(None)

    shape = image.shape
    imsize = shape[:2]
    dim = shape[2:]

    # Random affine
    blur_size = int(4*sigma) | 1
    dx = cv2.GaussianBlur(random_state.rand(*imsize)*2-1,
                          ksize=(blur_size, blur_size), sigmaX=sigma) * alpha
    dy = cv2.GaussianBlur(random_state.rand(*imsize)*2-1,
                          ksize=(blur_size, blur_size), sigmaX=sigma) * alpha

    # use as_strided to copy things over across n1...nn channels
    dx = as_strided(dx.astype(np.float32),
                    strides=(0,) * len(dim) + (4*shape[1], 4),
                    shape=dim+(shape[0], shape[1]))
    dx = np.transpose(dx, axes=(-2, -1) + tuple(range(len(dim))))

    dy = as_strided(dy.astype(np.float32),
                    strides=(0,) * len(dim) + (4*shape[1], 4),
                    shape=dim+(shape[0], shape[1]))
    dy = np.transpose(dy, axes=(-2, -1) + tuple(range(len(dim))))

    coord = np.meshgrid(*[np.arange(shape_i) for shape_i in (shape[1], shape[0]) + dim])
    indices = [np.reshape(e+de, (-1, 1)) for e, de in zip([coord[1], coord[0]] + coord[2:],
                                                          [dy, dx] + [0] * len(dim))]

    if lazy:
        return indices
    res = map_coordinates(image, indices, order=order, mode='reflect').reshape(shape)
    return res

class ElasticTransform(object):
    """Apply elastic transformation on a numpy.ndarray (H x W x C)

    """

    def __init__(self, alpha, sigma, order=1):
        self.alpha = alpha
        self.sigma = sigma
        self.order = order

    def __call__(self, image):
        if isinstance(self.alpha, Sequence):
            alpha = random_num_generator(self.alpha)
        else:
            alpha = self.alpha
        if isinstance(self.sigma, Sequence):
            sigma = random_num_generator(self.sigma)
        else:
            sigma = self.sigma
        return elastic_transform_nd(image, alpha=alpha, sigma=sigma, order=self.order)

class RandomFlip3D(object):

    def __init__(self, h=True, v=True, t=True, p=0.5):
        """

        Randomly flip an image horizontally and/or vertically with

        some probability.



        Arguments

        ---------

        h : boolean

            whether to horizontally flip w/ probability p



        v : boolean

            whether to vertically flip w/ probability p



        p : float between [0,1]

            probability with which to apply allowed flipping operations

        """
        self.horizontal = h
        self.vertical = v
        self.depth = t
        self.p = p

    def __call__(self, x, y=None):
        # horizontal flip with p = self.p
        if self.horizontal:
            if np.random.random() < self.p:
                x = x[::-1, ...]

        # vertical flip with p = self.p
        if self.vertical:
            if np.random.random() < self.p:
                x = x[:, ::-1, ...]

        if self.depth:
            if np.random.random() < self.p:
                x = x[..., ::-1]

        return x