training: resume: False # If True, must set hydra.run.dir accordingly pretrain_path: "" interval_visualize: 1000 interval_save_checkpoint: 5000 interval_delete_checkpoint: 10000 interval_evaluate: 5000 delete_all_checkpoints_after_training: False lr: 1e-4 mixed_precision: True matmul_precision: high max_iterations: 100000 batch_size: 64 num_workers: 8 gpu_id: 0 freeze_encoder: True seed: 0 job_key: "" # Use this for submitit sweeps where timestamps might collide translation_scale: 1.0 regression: False prob_unconditional: 0 load_extra_cameras: False calculate_intrinsics: False distort: False normalize_first_camera: True diffuse_origins_and_endpoints: True diffuse_depths: False depth_resolution: 1 dpt_head: False full_num_patches_x: 16 full_num_patches_y: 16 dpt_encoder_features: True nearest_neighbor: True no_bg_targets: True unit_normalize_scene: False sd_scale: 2 bfloat: True first_cam_mediod: True gradient_clipping: False l1_loss: False grad_accumulation: False reinit: False model: pred_x0: True model_type: dit num_patches_x: 16 num_patches_y: 16 depth: 16 num_images: 1 random_num_images: True feature_extractor: dino append_ndc: True within_image: False use_homogeneous: True freeze_transformer: False cond_depth_mask: True noise_scheduler: type: linear max_timesteps: 100 beta_start: 0.0120 beta_end: 0.00085 marigold_ddim: False dataset: name: co3d shape: all_train apply_augmentation: True use_global_intrinsics: True mask_holes: True image_size: 224 debug: wandb: True project_name: diffusionsfm run_name: anomaly_detection: False hydra: run: dir: ./output/${now:%m%d_%H%M%S_%f}${training.job_key} output_subdir: hydra