DiffusionSfM / conf /config.yaml
qitaoz's picture
Upload 57 files
4562a06 verified
raw
history blame
1.8 kB
training:
resume: False # If True, must set hydra.run.dir accordingly
pretrain_path: ""
interval_visualize: 1000
interval_save_checkpoint: 5000
interval_delete_checkpoint: 10000
interval_evaluate: 5000
delete_all_checkpoints_after_training: False
lr: 1e-4
mixed_precision: True
matmul_precision: high
max_iterations: 100000
batch_size: 64
num_workers: 8
gpu_id: 0
freeze_encoder: True
seed: 0
job_key: "" # Use this for submitit sweeps where timestamps might collide
translation_scale: 1.0
regression: False
prob_unconditional: 0
load_extra_cameras: False
calculate_intrinsics: False
distort: False
normalize_first_camera: True
diffuse_origins_and_endpoints: True
diffuse_depths: False
depth_resolution: 1
dpt_head: False
full_num_patches_x: 16
full_num_patches_y: 16
dpt_encoder_features: True
nearest_neighbor: True
no_bg_targets: True
unit_normalize_scene: False
sd_scale: 2
bfloat: True
first_cam_mediod: True
gradient_clipping: False
l1_loss: False
grad_accumulation: False
reinit: False
model:
pred_x0: True
model_type: dit
num_patches_x: 16
num_patches_y: 16
depth: 16
num_images: 1
random_num_images: True
feature_extractor: dino
append_ndc: True
within_image: False
use_homogeneous: True
freeze_transformer: False
cond_depth_mask: True
noise_scheduler:
type: linear
max_timesteps: 100
beta_start: 0.0120
beta_end: 0.00085
marigold_ddim: False
dataset:
name: co3d
shape: all_train
apply_augmentation: True
use_global_intrinsics: True
mask_holes: True
image_size: 224
debug:
wandb: True
project_name: diffusionsfm
run_name:
anomaly_detection: False
hydra:
run:
dir: ./output/${now:%m%d_%H%M%S_%f}${training.job_key}
output_subdir: hydra