File size: 4,432 Bytes
4464055
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
https://docs.byteplus.com/en/docs/ModelArk/1099455

model list
https://docs.byteplus.com/en/docs/ModelArk/1330310
"""
import argparse
from datetime import datetime
import json
import os
from pathlib import Path
import sys
import time
from zoneinfo import ZoneInfo  # Python 3.9+ 自带,无需安装

pwd = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(pwd, "../"))

from openai import OpenAI

from project_settings import environment, project_path


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--model_name",
        default="seedance-1-0-lite-t2v-250428",
        type=str
    )
    parser.add_argument(
        "--eval_dataset_name",
        default="arc-easy-1000-choice.jsonl",
        type=str
    )
    parser.add_argument(
        "--eval_dataset_dir",
        default=(project_path / "data/dataset").as_posix(),
        type=str
    )
    parser.add_argument(
        "--eval_data_dir",
        default=(project_path / "data/eval_data").as_posix(),
        type=str
    )
    parser.add_argument(
        "--client",
        default="shenzhen_sase",
        type=str
    )
    parser.add_argument(
        "--service",
        default="byteplus_api_key",
        type=str
    )
    args = parser.parse_args()
    return args


def main():
    args = get_args()

    eval_dataset_dir = Path(args.eval_dataset_dir)
    eval_dataset_dir.mkdir(parents=True, exist_ok=True)
    eval_data_dir = Path(args.eval_data_dir)
    eval_data_dir.mkdir(parents=True, exist_ok=True)

    tz = ZoneInfo("Asia/Shanghai")
    now = datetime.now(tz)
    create_time_str = now.strftime("%Y%m%d_%H%M%S")

    eval_dataset = eval_dataset_dir / args.eval_dataset_name

    output_file = eval_data_dir / f"byteplus/byteplus/{args.model_name}/{args.client}/{args.service}/{create_time_str}/{args.eval_dataset_name}"
    output_file.parent.mkdir(parents=True, exist_ok=True)

    api_key = environment.get(args.service, dtype=str)
    client = OpenAI(
        base_url="https://ark.ap-southeast.bytepluses.com/api/v3",
        # Read your Ark API Key from the environment variable.
        api_key=api_key
    )

    total = 0
    total_correct = 0

    # finished
    finished_idx_set = set()
    if os.path.exists(output_file.as_posix()):
        with open(output_file.as_posix(), "r", encoding="utf-8") as f:
            for row in f:
                row = json.loads(row)
                idx = row["idx"]
                total = row["total"]
                total_correct = row["total_correct"]
                finished_idx_set.add(idx)
    print(f"finished count: {len(finished_idx_set)}")

    with open(eval_dataset.as_posix(), "r", encoding="utf-8") as fin, open(output_file.as_posix(), "a+", encoding="utf-8") as fout:
        for row in fin:
            row = json.loads(row)
            idx = row["idx"]
            prompt = row["prompt"]
            response = row["response"]

            if idx in finished_idx_set:
                continue
            finished_idx_set.add(idx)

            try:
                time_begin = time.time()
                completion = client.chat.completions.create(
                    # Replace with your Inference Endpoint.
                    model=args.model_name,
                    messages=[
                        {"role": "user", "content": prompt},
                    ]
                )
                time_cost = time.time() - time_begin
                print(f"time_cost: {time_cost}")
            except Exception as e:
                print(f"request failed, error type: {type(e)}, error text: {str(e)}")
                continue

            prediction = completion.choices[0].message.content

            correct = 1 if prediction == response else 0

            total += 1
            total_correct += correct
            score = total_correct / total

            row_ = {
                "idx": idx,
                "prompt": prompt,
                "response": response,
                "prediction": prediction,
                "correct": correct,
                "total": total,
                "total_correct": total_correct,
                "score": score,
                "time_cost": time_cost,
            }
            row_ = json.dumps(row_, ensure_ascii=False)
            fout.write(f"{row_}\n")

    return


if __name__ == "__main__":
    main()