akhaliq HF Staff commited on
Commit
2ca95f6
·
1 Parent(s): 05f6d46

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -2
app.py CHANGED
@@ -2,9 +2,13 @@ import torch
2
  from PIL import Image
3
  from torchvision import transforms
4
  import gradio as gr
 
 
5
  model = torch.hub.load('XingangPan/IBN-Net', 'resnet50_ibn_a', pretrained=True)
6
  model.eval()
7
 
 
 
8
  # Download an example image from the pytorch website
9
  torch.hub.download_url_to_file("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
10
 
@@ -28,8 +32,7 @@ def inference(input_image):
28
  output = model(input_batch)
29
  # The output has unnormalized scores. To get probabilities, you can run a softmax on it.
30
  probabilities = torch.nn.functional.softmax(output[0], dim=0)
31
- # Download ImageNet labels
32
- !wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt
33
  # Read the categories
34
  with open("imagenet_classes.txt", "r") as f:
35
  categories = [s.strip() for s in f.readlines()]
 
2
  from PIL import Image
3
  from torchvision import transforms
4
  import gradio as gr
5
+ import os
6
+
7
  model = torch.hub.load('XingangPan/IBN-Net', 'resnet50_ibn_a', pretrained=True)
8
  model.eval()
9
 
10
+ # Download ImageNet labels
11
+ os.system("wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt")
12
  # Download an example image from the pytorch website
13
  torch.hub.download_url_to_file("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
14
 
 
32
  output = model(input_batch)
33
  # The output has unnormalized scores. To get probabilities, you can run a softmax on it.
34
  probabilities = torch.nn.functional.softmax(output[0], dim=0)
35
+
 
36
  # Read the categories
37
  with open("imagenet_classes.txt", "r") as f:
38
  categories = [s.strip() for s in f.readlines()]