File size: 7,977 Bytes
93196f3 f63fff0 41f86f5 98b5ad2 942923c 2e37859 508da0c 11999c7 bea3bac 11999c7 bea3bac 98b5ad2 bea3bac b3348ab 991eed9 c5595b8 bea3bac 460d7b4 dc609e2 b3348ab c5595b8 daa5b98 bea3bac daa5b98 bea3bac daa5b98 bea3bac daa5b98 bea3bac daa5b98 bea3bac daa5b98 bea3bac daa5b98 20fb87c f2e9086 20fb87c 15ddc73 20fb87c 510e15b ad01300 510e15b 20fb87c ad01300 510e15b 98b5ad2 b4a19b5 98b5ad2 2e37859 6f415f1 2e37859 98b5ad2 2e37859 98b5ad2 2e37859 98b5ad2 2e37859 98b5ad2 606c1e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import streamlit as st
from data_utils import *
import xarray as xr
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import pickle
import glob, os
import re
import tensorflow as tf
import netCDF4
import copy
import string
import h5py
from tqdm import tqdm
st.title('A _Quickstart Notebook_ for :blue[ClimSim]:')
st.link_button("ClimSim", "https://huggingface.co/datasets/LEAP/subsampled_low_res/tree/main",use_container_width=True)
st.header('**Step 1:** Import data_utils')
st.code('''from data_utils import *''',language='python')
st.header('**Step 2:** Instantiate class')
st.code('''#Change the path to your own
grid_info = xr.open_dataset('ClimSim_low-res_grid-info.nc')
input_mean = xr.open_dataset('input_mean.nc')
input_max = xr.open_dataset('input_max.nc')
input_min = xr.open_dataset('input_min.nc')
output_scale = xr.open_dataset('output_scale.nc')
data = data_utils(grid_info = grid_info,
input_mean = input_mean,
input_max = input_max,
input_min = input_min,
output_scale = output_scale)
data.set_to_v1_vars()''',language='python')
#Change the path to your own
grid_info = xr.open_dataset('ClimSim_low-res_grid-info.nc')
input_mean = xr.open_dataset('input_mean.nc')
input_max = xr.open_dataset('input_max.nc')
input_min = xr.open_dataset('input_min.nc')
output_scale = xr.open_dataset('output_scale.nc')
data = data_utils(grid_info = grid_info,
input_mean = input_mean,
input_max = input_max,
input_min = input_min,
output_scale = output_scale)
data.set_to_v1_vars()
st.header('**Step 3:** Load training and validation data')
st.code('''data.input_train = data.load_npy_file('train_input_small.npy')
data.target_train = data.load_npy_file('train_target_small.npy')
data.input_val = data.load_npy_file('val_input_small.npy')
data.target_val = data.load_npy_file('val_target_small.npy')''',language='python')
data.input_train = data.load_npy_file('train_input_small.npy')
data.target_train = data.load_npy_file('train_target_small.npy')
data.input_val = data.load_npy_file('val_input_small.npy')
data.target_val = data.load_npy_file('val_target_small.npy')
st.header('**Step 4:** Train models')
st.subheader('Train constant prediction model')
st.code('''const_model = data.target_train.mean(axis = 0)''',language='python')
const_model = data.target_train.mean(axis = 0)
st.subheader('Train multiple linear regression model')
st.text('adding bias unit')
st.code('''X = data.input_train
bias_vector = np.ones((X.shape[0], 1))
X = np.concatenate((X, bias_vector), axis=1)''',language='python')
X = data.input_train
bias_vector = np.ones((X.shape[0], 1))
X = np.concatenate((X, bias_vector), axis=1)
st.text('create model')
st.code('''mlr_weights = np.linalg.inv(X.transpose()@X)@X.transpose()@data.target_train''',language='python')
mlr_weights = np.linalg.inv(X.transpose()@X)@X.transpose()@data.target_train
st.subheader('Train your models here')
st.code('''###
# train your model here
###''',language='python')
###
# train your model here
###
st.link_button("Go to Original Dataset", "https://huggingface.co/datasets/LEAP/subsampled_low_res/tree/main",use_container_width=True)
st.header('**Step 5:** Evaluate on validation data')
data.set_pressure_grid(data_split = 'val')
# Constant Prediction
const_pred_val = np.repeat(const_model[np.newaxis, :], data.target_val.shape[0], axis = 0)
print(const_pred_val.shape)
# Multiple Linear Regression
X_val = data.input_val
bias_vector_val = np.ones((X_val.shape[0], 1))
X_val = np.concatenate((X_val, bias_vector_val), axis=1)
mlr_pred_val = X_val@mlr_weights
print(mlr_pred_val.shape)
# Load your prediction here
# Load predictions into data_utils object
data.model_names = ['const', 'mlr'] # add names of your models here
preds = [const_pred_val, mlr_pred_val] # add your custom predictions here
data.preds_val = dict(zip(data.model_names, preds))
data.reweight_target(data_split = 'val')
data.reweight_preds(data_split = 'val')
data.metrics_names = ['MAE', 'RMSE', 'R2', 'bias']
data.create_metrics_df(data_split = 'val')
letters = string.ascii_lowercase
# create custom dictionary for plotting
dict_var = data.metrics_var_val
plot_df_byvar = {}
for metric in data.metrics_names:
plot_df_byvar[metric] = pd.DataFrame([dict_var[model][metric] for model in data.model_names],
index=data.model_names)
plot_df_byvar[metric] = plot_df_byvar[metric].rename(columns = data.var_short_names).transpose()
# plot figure
fig, axes = plt.subplots(nrows = len(data.metrics_names), sharex = True)
for i in range(len(data.metrics_names)):
plot_df_byvar[data.metrics_names[i]].plot.bar(
legend = False,
ax = axes[i])
if data.metrics_names[i] != 'R2':
axes[i].set_ylabel('$W/m^2$')
else:
axes[i].set_ylim(0,1)
axes[i].set_title(f'({letters[i]}) {data.metrics_names[i]}')
axes[i].set_xlabel('Output variable')
axes[i].set_xticklabels(plot_df_byvar[data.metrics_names[i]].index, \
rotation=0, ha='center')
axes[0].legend(columnspacing = .9,
labelspacing = .3,
handleheight = .07,
handlelength = 1.5,
handletextpad = .2,
borderpad = .2,
ncol = 3,
loc = 'upper right')
fig.set_size_inches(7,8)
fig.tight_layout()
st.pyplot(fig)
# path to target input
data.input_scoring = np.load('scoring_input_small.npy')
# path to target output
data.target_scoring = np.load('scoring_target_small.npy')
data.set_pressure_grid(data_split = 'scoring')
# constant prediction
const_pred_scoring = np.repeat(const_model[np.newaxis, :], data.target_scoring.shape[0], axis = 0)
print(const_pred_scoring.shape)
# multiple linear regression
X_scoring = data.input_scoring
bias_vector_scoring = np.ones((X_scoring.shape[0], 1))
X_scoring = np.concatenate((X_scoring, bias_vector_scoring), axis=1)
mlr_pred_scoring = X_scoring@mlr_weights
print(mlr_pred_scoring.shape)
# Your model prediction here
# Load predictions into object
data.model_names = ['const', 'mlr'] # model name here
preds = [const_pred_scoring, mlr_pred_scoring] # add prediction here
data.preds_scoring = dict(zip(data.model_names, preds))
# weight predictions and target
data.reweight_target(data_split = 'scoring')
data.reweight_preds(data_split = 'scoring')
# set and calculate metrics
data.metrics_names = ['MAE', 'RMSE', 'R2', 'bias']
data.create_metrics_df(data_split = 'scoring')
# set plotting settings
letters = string.ascii_lowercase
# create custom dictionary for plotting
dict_var = data.metrics_var_scoring
plot_df_byvar = {}
for metric in data.metrics_names:
plot_df_byvar[metric] = pd.DataFrame([dict_var[model][metric] for model in data.model_names],
index=data.model_names)
plot_df_byvar[metric] = plot_df_byvar[metric].rename(columns = data.var_short_names).transpose()
# plot figure
fig, axes = plt.subplots(nrows = len(data.metrics_names), sharex = True)
for i in range(len(data.metrics_names)):
plot_df_byvar[data.metrics_names[i]].plot.bar(
legend = False,
ax = axes[i])
if data.metrics_names[i] != 'R2':
axes[i].set_ylabel('$W/m^2$')
else:
axes[i].set_ylim(0,1)
axes[i].set_title(f'({letters[i]}) {data.metrics_names[i]}')
axes[i].set_xlabel('Output variable')
axes[i].set_xticklabels(plot_df_byvar[data.metrics_names[i]].index, \
rotation=0, ha='center')
axes[0].legend(columnspacing = .9,
labelspacing = .3,
handleheight = .07,
handlelength = 1.5,
handletextpad = .2,
borderpad = .2,
ncol = 3,
loc = 'upper right')
fig.set_size_inches(7,8)
fig.tight_layout()
st.pyplot(fig)
st.markdown('Streamlit p') |