File size: 7,977 Bytes
93196f3
f63fff0
 
 
 
 
 
 
 
 
 
 
 
 
 
41f86f5
98b5ad2
942923c
2e37859
508da0c
 
11999c7
bea3bac
 
 
 
 
 
 
11999c7
bea3bac
 
 
 
 
 
98b5ad2
bea3bac
b3348ab
991eed9
 
 
 
c5595b8
 
 
 
 
 
 
 
 
bea3bac
 
 
 
 
 
 
460d7b4
dc609e2
 
b3348ab
c5595b8
daa5b98
bea3bac
 
 
 
daa5b98
bea3bac
 
 
 
 
 
 
 
daa5b98
 
 
bea3bac
 
 
 
 
daa5b98
bea3bac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
daa5b98
 
bea3bac
daa5b98
 
 
 
 
 
 
bea3bac
daa5b98
 
 
 
 
 
 
 
 
 
20fb87c
 
 
 
f2e9086
20fb87c
 
 
 
 
 
 
 
 
 
 
 
 
15ddc73
20fb87c
 
 
 
 
 
 
510e15b
ad01300
510e15b
20fb87c
 
 
 
 
 
 
 
 
 
 
 
 
 
ad01300
510e15b
98b5ad2
b4a19b5
98b5ad2
 
2e37859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f415f1
2e37859
 
 
 
 
 
 
 
 
98b5ad2
2e37859
 
 
 
 
 
 
 
 
 
98b5ad2
2e37859
 
 
 
98b5ad2
2e37859
 
 
 
 
 
 
 
 
 
 
98b5ad2
606c1e9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import streamlit as st
from data_utils import *
import xarray as xr
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import pickle
import glob, os
import re
import tensorflow as tf
import netCDF4
import copy
import string
import h5py
from tqdm import tqdm


st.title('A _Quickstart Notebook_ for :blue[ClimSim]:')
st.link_button("ClimSim", "https://huggingface.co/datasets/LEAP/subsampled_low_res/tree/main",use_container_width=True)
st.header('**Step 1:**  Import data_utils')
st.code('''from data_utils import *''',language='python')

st.header('**Step 2:**  Instantiate class')
st.code('''#Change the path to your own
grid_info = xr.open_dataset('ClimSim_low-res_grid-info.nc')
input_mean = xr.open_dataset('input_mean.nc')
input_max = xr.open_dataset('input_max.nc')
input_min = xr.open_dataset('input_min.nc')
output_scale = xr.open_dataset('output_scale.nc')

data = data_utils(grid_info = grid_info,
                  input_mean = input_mean,
                  input_max = input_max,
                  input_min = input_min,
                  output_scale = output_scale)
data.set_to_v1_vars()''',language='python')

#Change the path to your own
grid_info = xr.open_dataset('ClimSim_low-res_grid-info.nc')
input_mean = xr.open_dataset('input_mean.nc')
input_max = xr.open_dataset('input_max.nc')
input_min = xr.open_dataset('input_min.nc')
output_scale = xr.open_dataset('output_scale.nc')

data = data_utils(grid_info = grid_info,
                  input_mean = input_mean,
                  input_max = input_max,
                  input_min = input_min,
                  output_scale = output_scale)

data.set_to_v1_vars()


st.header('**Step 3:**  Load training and validation data')
st.code('''data.input_train = data.load_npy_file('train_input_small.npy')
data.target_train = data.load_npy_file('train_target_small.npy')
data.input_val = data.load_npy_file('val_input_small.npy')
data.target_val = data.load_npy_file('val_target_small.npy')''',language='python')

data.input_train = data.load_npy_file('train_input_small.npy')
data.target_train = data.load_npy_file('train_target_small.npy')
data.input_val = data.load_npy_file('val_input_small.npy')
data.target_val = data.load_npy_file('val_target_small.npy')


st.header('**Step 4:**  Train models')
st.subheader('Train constant prediction model')
st.code('''const_model = data.target_train.mean(axis = 0)''',language='python')

const_model = data.target_train.mean(axis = 0)


st.subheader('Train multiple linear regression model')
st.text('adding bias unit')
st.code('''X = data.input_train
bias_vector = np.ones((X.shape[0], 1))
X = np.concatenate((X, bias_vector), axis=1)''',language='python')

X = data.input_train
bias_vector = np.ones((X.shape[0], 1))
X = np.concatenate((X, bias_vector), axis=1)


st.text('create model')
st.code('''mlr_weights = np.linalg.inv(X.transpose()@X)@X.transpose()@data.target_train''',language='python')

mlr_weights = np.linalg.inv(X.transpose()@X)@X.transpose()@data.target_train


st.subheader('Train your models here')
st.code('''### 
# train your model here
###''',language='python')

### 
# train your model here
###


st.link_button("Go to Original Dataset", "https://huggingface.co/datasets/LEAP/subsampled_low_res/tree/main",use_container_width=True)

st.header('**Step 5:**  Evaluate on validation data')















data.set_pressure_grid(data_split = 'val')

# Constant Prediction
const_pred_val = np.repeat(const_model[np.newaxis, :], data.target_val.shape[0], axis = 0)
print(const_pred_val.shape)

# Multiple Linear Regression
X_val = data.input_val
bias_vector_val = np.ones((X_val.shape[0], 1))
X_val = np.concatenate((X_val, bias_vector_val), axis=1)

mlr_pred_val = X_val@mlr_weights
print(mlr_pred_val.shape)

# Load your prediction here

# Load predictions into data_utils object
data.model_names = ['const', 'mlr'] # add names of your models here
preds = [const_pred_val, mlr_pred_val] # add your custom predictions here
data.preds_val = dict(zip(data.model_names, preds))

data.reweight_target(data_split = 'val')
data.reweight_preds(data_split = 'val')
data.metrics_names = ['MAE', 'RMSE', 'R2', 'bias']
data.create_metrics_df(data_split = 'val')

letters = string.ascii_lowercase

# create custom dictionary for plotting
dict_var = data.metrics_var_val
plot_df_byvar = {}
for metric in data.metrics_names:
    plot_df_byvar[metric] = pd.DataFrame([dict_var[model][metric] for model in data.model_names],
                                               index=data.model_names)
    plot_df_byvar[metric] = plot_df_byvar[metric].rename(columns = data.var_short_names).transpose()

# plot figure
fig, axes = plt.subplots(nrows  = len(data.metrics_names), sharex = True)
for i in range(len(data.metrics_names)):
    plot_df_byvar[data.metrics_names[i]].plot.bar(
        legend = False,
        ax = axes[i])
    if data.metrics_names[i] != 'R2':
        axes[i].set_ylabel('$W/m^2$')
    else:
        axes[i].set_ylim(0,1)
    axes[i].set_title(f'({letters[i]}) {data.metrics_names[i]}')

    
    
axes[i].set_xlabel('Output variable')
axes[i].set_xticklabels(plot_df_byvar[data.metrics_names[i]].index, \
    rotation=0, ha='center')

axes[0].legend(columnspacing = .9,
               labelspacing = .3,
               handleheight = .07,
               handlelength = 1.5,
               handletextpad = .2,
               borderpad = .2,
               ncol = 3,
               loc = 'upper right')
fig.set_size_inches(7,8)
fig.tight_layout()
st.pyplot(fig)

# path to target input
data.input_scoring = np.load('scoring_input_small.npy')
# path to target output
data.target_scoring = np.load('scoring_target_small.npy')
data.set_pressure_grid(data_split = 'scoring')
# constant prediction
const_pred_scoring = np.repeat(const_model[np.newaxis, :], data.target_scoring.shape[0], axis = 0)
print(const_pred_scoring.shape)

# multiple linear regression
X_scoring = data.input_scoring
bias_vector_scoring = np.ones((X_scoring.shape[0], 1))
X_scoring = np.concatenate((X_scoring, bias_vector_scoring), axis=1)
mlr_pred_scoring = X_scoring@mlr_weights
print(mlr_pred_scoring.shape)

# Your model prediction here

# Load predictions into object
data.model_names = ['const', 'mlr'] # model name here
preds = [const_pred_scoring, mlr_pred_scoring] # add prediction here
data.preds_scoring = dict(zip(data.model_names, preds))
# weight predictions and target
data.reweight_target(data_split = 'scoring')
data.reweight_preds(data_split = 'scoring')

# set and calculate metrics
data.metrics_names = ['MAE', 'RMSE', 'R2', 'bias']
data.create_metrics_df(data_split = 'scoring')

# set plotting settings

letters = string.ascii_lowercase

# create custom dictionary for plotting
dict_var = data.metrics_var_scoring
plot_df_byvar = {}
for metric in data.metrics_names:
    plot_df_byvar[metric] = pd.DataFrame([dict_var[model][metric] for model in data.model_names],
                                               index=data.model_names)
    plot_df_byvar[metric] = plot_df_byvar[metric].rename(columns = data.var_short_names).transpose()

# plot figure
fig, axes = plt.subplots(nrows  = len(data.metrics_names), sharex = True)
for i in range(len(data.metrics_names)):
    plot_df_byvar[data.metrics_names[i]].plot.bar(
        legend = False,
        ax = axes[i])
    if data.metrics_names[i] != 'R2':
        axes[i].set_ylabel('$W/m^2$')
    else:
        axes[i].set_ylim(0,1)

    axes[i].set_title(f'({letters[i]}) {data.metrics_names[i]}')
axes[i].set_xlabel('Output variable')
axes[i].set_xticklabels(plot_df_byvar[data.metrics_names[i]].index, \
    rotation=0, ha='center')

axes[0].legend(columnspacing = .9,
               labelspacing = .3,
               handleheight = .07,
               handlelength = 1.5,
               handletextpad = .2,
               borderpad = .2,
               ncol = 3,
               loc = 'upper right')
fig.set_size_inches(7,8)
fig.tight_layout()
st.pyplot(fig)

st.markdown('Streamlit p')