|
from threading import Thread |
|
import logging |
|
import time |
|
|
|
logging.basicConfig( |
|
level=logging.INFO, |
|
format="%(asctime)s [%(levelname)s] %(name)s - %(message)s", |
|
) |
|
|
|
import torch |
|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, TextIteratorStreamer |
|
|
|
model_id = "pszemraj/nanoT5-mid-2k-instruct" |
|
torch_device = "cuda" if torch.cuda.is_available() else "cpu" |
|
logging.info(f"Running on device:\t {torch_device}") |
|
logging.info(f"CPU threads:\t {torch.get_num_threads()}") |
|
|
|
|
|
if torch_device == "cuda": |
|
model = AutoModelForSeq2SeqLM.from_pretrained( |
|
model_id, load_in_8bit=True, device_map="auto" |
|
) |
|
else: |
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_id) |
|
try: |
|
model = torch.compile(model) |
|
except Exception as e: |
|
logging.error(f"Unable to compile model:\t{e}") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
|
|
def run_generation( |
|
user_text, |
|
top_p, |
|
temperature, |
|
top_k, |
|
max_new_tokens, |
|
repetition_penalty=1.1, |
|
length_penalty=1.0, |
|
no_repeat_ngram_size=4, |
|
use_generation_config=False, |
|
): |
|
st = time.perf_counter() |
|
|
|
model_inputs = tokenizer([user_text], return_tensors="pt").to(torch_device) |
|
|
|
|
|
|
|
streamer = TextIteratorStreamer( |
|
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True |
|
) |
|
generate_kwargs = dict( |
|
model_inputs, |
|
streamer=streamer, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=True, |
|
num_beams=1, |
|
top_p=top_p, |
|
temperature=float(temperature), |
|
top_k=top_k, |
|
repetition_penalty=repetition_penalty, |
|
length_penalty=length_penalty, |
|
no_repeat_ngram_size=no_repeat_ngram_size, |
|
) |
|
t = Thread(target=model.generate, kwargs=generate_kwargs) |
|
t.start() |
|
|
|
|
|
model_output = "" |
|
for new_text in streamer: |
|
model_output += new_text |
|
yield model_output |
|
logging.info("Total rt:\t{rt} sec".format(rt=round(time.perf_counter() - st, 3))) |
|
return model_output |
|
|
|
|
|
def reset_textbox(): |
|
return gr.update(value="") |
|
|
|
|
|
with gr.Blocks() as demo: |
|
duplicate_link = ( |
|
"https://huggingface.co/spaces/joaogante/transformers_streaming?duplicate=true" |
|
) |
|
gr.Markdown( |
|
"# 🤗 Transformers 🔥Streaming🔥 on Gradio\n" |
|
"This demo showcases the use of the " |
|
"[streaming feature](https://huggingface.co/docs/transformers/main/en/generation_strategies#streaming) " |
|
"of 🤗 Transformers with Gradio to generate text in real-time. It uses " |
|
f"[{model_id}](https://huggingface.co/{model_id}) and the Spaces free compute tier.\n\n" |
|
f"Feel free to [duplicate this Space]({duplicate_link}) to try your own models or use this space as a " |
|
"template! 💛" |
|
) |
|
gr.Markdown("---") |
|
with gr.Row(): |
|
with gr.Column(scale=4): |
|
user_text = gr.Textbox( |
|
value="How to become a polar bear tamer?", |
|
label="User input", |
|
) |
|
model_output = gr.Textbox(label="Model output", lines=10, interactive=False) |
|
button_submit = gr.Button(value="Submit", variant="primary") |
|
|
|
with gr.Column(scale=1): |
|
max_new_tokens = gr.Slider( |
|
minimum=32, |
|
maximum=1024, |
|
value=256, |
|
step=32, |
|
interactive=True, |
|
label="Max New Tokens", |
|
) |
|
top_p = gr.Slider( |
|
minimum=0.05, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
interactive=True, |
|
label="Top-p (nucleus sampling)", |
|
) |
|
top_k = gr.Slider( |
|
minimum=1, |
|
maximum=50, |
|
value=50, |
|
step=1, |
|
interactive=True, |
|
label="Top-k", |
|
) |
|
temperature = gr.Slider( |
|
minimum=0.1, |
|
maximum=1.4, |
|
value=0.3, |
|
step=0.05, |
|
interactive=True, |
|
label="Temperature", |
|
) |
|
repetition_penalty = gr.Slider( |
|
minimum=0.9, |
|
maximum=2.5, |
|
value=1.1, |
|
step=0.1, |
|
interactive=True, |
|
label="Repetition Penalty", |
|
) |
|
length_penalty = gr.Slider( |
|
minimum=0.8, |
|
maximum=1.5, |
|
value=1.0, |
|
step=0.1, |
|
interactive=True, |
|
label="Length Penalty", |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
user_text.submit( |
|
run_generation, |
|
[user_text, top_p, temperature, top_k, max_new_tokens, repetition_penalty, length_penalty], |
|
model_output, |
|
) |
|
button_submit.click( |
|
run_generation, |
|
[user_text, top_p, temperature, top_k, max_new_tokens, repetition_penalty, length_penalty], |
|
model_output, |
|
) |
|
|
|
demo.queue(max_size=32).launch(enable_queue=True) |