from transformers import BlipProcessor, BlipForConditionalGeneration | |
from PIL import Image | |
# Load the pre-trained BLIP model and processor | |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") | |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") | |
def generate_blip_caption(image_path): | |
""" | |
Generates a caption for a given image using the BLIP model. | |
Args: | |
image_path (str): The path to the image file. | |
Returns: | |
str: The generated caption. | |
""" | |
# Open the image | |
image = Image.open(image_path).convert("RGB") | |
# Preprocess the image and generate the caption | |
inputs = processor(images=image, return_tensors="pt") | |
outputs = model.generate(**inputs) | |
# Decode the generated caption | |
caption = processor.decode(outputs[0], skip_special_tokens=True) | |
return caption | |