VisionScope-R2 / app.py
prithivMLmods's picture
Update app.py
b40230a verified
raw
history blame
14.5 kB
import os
import random
import uuid
import json
import requests
import time
import asyncio
from threading import Thread
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2
from transformers import (
Qwen2_5_VLForConditionalGeneration,
Qwen2VLForConditionalGeneration,
AutoProcessor,
AutoTokenizer,
AutoModel,
AutoImageProcessor,
TextIteratorStreamer,
)
from transformers.image_utils import load_image
# Constants for text generation
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load Llama-3.1-Nemotron-Nano-VL-8B-V1
MODEL_ID_M = "nvidia/Llama-3.1-Nemotron-Nano-VL-8B-V1"
processor_m = AutoImageProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
tokenizer_m = AutoTokenizer.from_pretrained(MODEL_ID_M)
tokenizer_m.pad_token = tokenizer_m.eos_token # Set pad_token to resolve ValueError
model_m = AutoModel.from_pretrained(
MODEL_ID_M,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load Space Thinker
MODEL_ID_Z = "remyxai/SpaceThinker-Qwen2.5VL-3B"
processor_z = AutoProcessor.from_pretrained(MODEL_ID_Z, trust_remote_code=True)
model_z = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_Z,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load coreOCR-7B-050325-preview
MODEL_ID_K = "prithivMLmods/coreOCR-7B-050325-preview"
processor_k = AutoProcessor.from_pretrained(MODEL_ID_K, trust_remote_code=True)
model_k = Qwen2VLForConditionalGeneration.from_pretrained(
MODEL_ID_K,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
def downsample_video(video_path):
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
@spaces.GPU
def generate_image(model_name: str, text: str, image: Image.Image,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
if model_name == "Llama-3.1-Nemotron-Nano-VL-8B-V1":
processor = processor_m
tokenizer = tokenizer_m
model = model_m
if image is None:
yield "Please upload an image."
return
# Construct message with <image> token as per reference
if "<image>" not in text:
message = f"<image>\n{text}"
else:
message = text
# Tokenize the message
inputs = tokenizer(message, return_tensors="pt").to(device)
# Process image
image_features = processor(image, return_tensors="pt").to(device)
# Combine inputs
generation_inputs = {
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
**image_features,
}
# Create streamer
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
# Generation kwargs
generation_kwargs = {
**generation_inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
# Start generation in a thread
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
elif model_name in ["SpaceThinker-3B", "coreOCR-7B-050325-preview"]:
if model_name == "SpaceThinker-3B":
processor = processor_z
model = model_z
else:
processor = processor_k
model = model_k
if image is None:
yield "Please upload an image."
return
messages = [{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": text},
]
}]
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt_full],
images=[image],
return_tensors="pt",
padding=True,
truncation=False,
max_length=MAX_INPUT_TOKEN_LENGTH
).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
else:
yield "Invalid model selected."
return
@spaces.GPU
def generate_video(model_name: str, text: str, video_path: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
if model_name == "Llama-3.1-Nemotron-Nano-VL-8B-V1":
processor = processor_m
tokenizer = tokenizer_m
model = model_m
if video_path is None:
yield "Please upload a video."
return
frames = downsample_video(video_path)
# Construct message with multiple <image> tokens
prompt_parts = ["<image>"] * len(frames) + [text]
message = " ".join(prompt_parts)
# Tokenize
inputs = tokenizer(message, return_tensors="pt").to(device)
# Process all frames
image_features = processor([frame[0] for frame in frames], return_tensors="pt").to(device)
# Combine inputs
generation_inputs = {
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
**image_features,
}
# Create streamer
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
# Generation kwargs
generation_kwargs = {
**generation_inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
# Start generation in a thread
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
elif model_name in ["SpaceThinker-3B", "coreOCR-7B-050325-preview"]:
if model_name == "SpaceThinker-3B":
processor = processor_z
model = model_z
else:
processor = processor_k
model = model_k
if video_path is None:
yield "Please upload a video."
return
frames = downsample_video(video_path)
messages = [
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
{"role": "user", "content": [{"type": "text", "text": text}]}
]
for frame in frames:
image, timestamp = frame
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
messages[1]["content"].append({"type": "image", "image": image})
inputs = processor.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt",
ilibre
truncation=False,
max_length=MAX_INPUT_TOKEN_LENGTH
).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
else:
yield "Invalid model selected."
return
# Define examples for image and video inference
image_examples = [
["type out the messy hand-writing as accurately as you can.", "images/1.jpg"],
["count the number of birds and explain the scene in detail.", "images/2.jpeg"],
["how far is the Goal from the penalty taker in this image?.", "images/3.png"],
["approximately how many meters apart are the chair and bookshelf?.", "images/4.png"],
["how far is the man in the red hat from the pallet of boxes in feet?.", "images/5.jpg"],
]
video_examples = [
["give the highlights of the movie scene video.", "videos/1.mp4"],
["explain the advertisement in detail.", "videos/2.mp4"]
]
css = """
.submit-btn {
background-color: #2980b9 !important;
color: white !important;
}
.submit-btn:hover {
background-color: #3498db !important;
}
"""
# Create the Gradio Interface
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
gr.Markdown("# **VisionScope-R2**")
with gr.Row():
with gr.Column():
with gr.Tabs():
with gr.TabItem("Image Inference"):
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
image_upload = gr.Image(type="pil", label="Image")
image_submit = gr.Button("Submit", elem_classes="submit-btn")
gr.Examples(
examples=image_examples,
inputs=[image_query, image_upload]
)
with gr.TabItem("Video Inference"):
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
video_upload = gr.Video(label="Video")
video_submit = gr.Button("Submit", elem_classes="submit-btn")
gr.Examples(
examples=video_examples,
inputs=[video_query, video_upload]
)
with gr.Accordion("Advanced options", open=False):
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
with gr.Column():
output = gr.Textbox(label="Output", interactive=False, lines=2, scale=2)
model_choice = gr.Radio(
choices=["Llama-3.1-Nemotron-Nano-VL-8B-V1", "SpaceThinker-3B", "coreOCR-7B-050325-preview"],
label="Select Model",
value="Llama-3.1-Nemotron-Nano-VL-8B-V1" # Updated default value to a valid choice
)
gr.Markdown("**Model Info**")
gr.Markdown("⤷ [SkyCaptioner-V1](https://huggingface.co/Skywork/SkyCaptioner-V1): structural video captioning model designed to generate high-quality, structural descriptions for video data. It integrates specialized sub-expert models.")
gr.Markdown("⤷ [SpaceThinker-Qwen2.5VL-3B](https://huggingface.co/remyxai/SpaceThinker-Qwen2.5VL-3B): thinking/reasoning multimodal/vision-language model (VLM) trained to enhance spatial reasoning.")
gr.Markdown("⤷ [coreOCR-7B-050325-preview](https://huggingface.co/prithivMLmods/coreOCR-7B-050325-preview): model is a fine-tuned version of qwen/qwen2-vl-7b, optimized for document-level optical character recognition (ocr), long-context vision-language understanding.")
gr.Markdown("⤷ [Imgscope-OCR-2B-0527](https://huggingface.co/prithivMLmods/Imgscope-OCR-2B-0527): fine-tuned version of qwen2-vl-2b-instruct, specifically optimized for messy handwriting recognition, document ocr, realistic handwritten ocr, and math problem solving with latex formatting.")
image_submit.click(
fn=generate_image,
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=output
)
video_submit.click(
fn=generate_video,
inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=output
)
if __name__ == "__main__":
demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True)