Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,507 Bytes
30d6225 c152910 30d6225 888b5aa 96f7759 30d6225 c152910 30d6225 9180057 96f7759 30d6225 db537bc 96f7759 db537bc c152910 96f7759 30d6225 db537bc 96f7759 db537bc c152910 db537bc 4148e9b db537bc c152910 4148e9b db537bc 4148e9b db537bc 4148e9b c152910 96f7759 30d6225 96f7759 30d6225 96f7759 30d6225 96f7759 30d6225 96f7759 30d6225 96f7759 30d6225 888b5aa 96f7759 30d6225 96f7759 db537bc 96f7759 db537bc 96f7759 62a17ee 59a74e8 96f7759 62a17ee 96f7759 62a17ee 96f7759 62a17ee 96f7759 db537bc c152910 9ebf911 96f7759 9ebf911 96f7759 c152910 db537bc c152910 f17f462 c152910 888b5aa c152910 db537bc c152910 9ebf911 30d6225 db537bc 30d6225 db537bc 96f7759 888b5aa 96f7759 db537bc 96f7759 db537bc 9ebf911 96f7759 9ebf911 db537bc c152910 db537bc 96f7759 4148e9b 96f7759 62a17ee 96f7759 62a17ee 96f7759 62a17ee 96f7759 62a17ee 96f7759 30d6225 62a17ee 96f7759 888b5aa 96f7759 62a17ee 888b5aa 62a17ee 888b5aa c152910 db537bc 96f7759 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import spaces
import json
import math
import os
import traceback
from io import BytesIO
from typing import Any, Dict, List, Optional, Tuple
import re
import time
from threading import Thread
import gradio as gr
import requests
import torch
from PIL import Image
from transformers import (
Qwen2_5_VLForConditionalGeneration,
AutoProcessor,
TextIteratorStreamer,
)
from qwen_vl_utils import process_vision_info
# Constants
MIN_PIXELS = 3136
MAX_PIXELS = 11289600
IMAGE_FACTOR = 28
MAX_INPUT_TOKEN_LENGTH = 2048
device = "cuda" if torch.cuda.is_available() else "cpu"
# Prompts
prompt = """Please output the layout information from the image, including each layout element's bbox, its category, and the corresponding text content within the bbox.
1. Bbox format: [x1, y1, x2, y2]
2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title'].
3. Text Extraction & Formatting Rules:
- Picture: For the 'Picture' category, the text field should be omitted.
- Formula: Format its text as LaTeX.
- Table: Format its text as HTML.
- All Others (Text, Title, etc.): Format their text as Markdown.
4. Constraints:
- The output text must be the original text from the image, with no translation.
- All layout elements must be sorted according to human reading order.
5. Final Output: The entire output must be a single JSON object.
"""
# Load models
MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-062825"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_M,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
MODEL_ID_T = "prithivMLmods/Megalodon-OCR-Sync-0713"
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_T,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
MODEL_ID_C = "nanonets/Nanonets-OCR-s"
processor_c = AutoProcessor.from_pretrained(MODEL_ID_C, trust_remote_code=True)
model_c = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_C,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
MODEL_ID_G = "echo840/MonkeyOCR"
SUBFOLDER = "Recognition"
processor_g = AutoProcessor.from_pretrained(
MODEL_ID_G,
trust_remote_code=True,
subfolder=SUBFOLDER
)
model_g = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_G,
trust_remote_code=True,
subfolder=SUBFOLDER,
torch_dtype=torch.float16
).to(device).eval()
# Utility functions
def round_by_factor(number: int, factor: int) -> int:
return round(number / factor) * factor
def smart_resize(
height: int,
width: int,
factor: int = 28,
min_pixels: int = 3136,
max_pixels: int = 11289600,
):
if max(height, width) / min(height, width) > 200:
raise ValueError(f"Aspect ratio too extreme: {max(height, width) / min(height, width)}")
h_bar = max(factor, round_by_factor(height, factor))
w_bar = max(factor, round_by_factor(width, factor))
if h_bar * w_bar > max_pixels:
beta = math.sqrt((height * width) / max_pixels)
h_bar = round_by_factor(height / beta, factor)
w_bar = round_by_factor(width / beta, factor)
elif h_bar * w_bar < min_pixels:
beta = math.sqrt(min_pixels / (height * width))
h_bar = round_by_factor(height * beta, factor)
w_bar = round_by_factor(width * beta, factor)
return h_bar, w_bar
def fetch_image(image_input, min_pixels: int = None, max_pixels: int = None):
if isinstance(image_input, str):
if image_input.startswith(("http://", "https://")):
response = requests.get(image_input)
image = Image.open(BytesIO(response.content)).convert('RGB')
else:
image = Image.open(image_input).convert('RGB')
elif isinstance(image_input, Image.Image):
image = image_input.convert('RGB')
else:
raise ValueError(f"Invalid image input type: {type(image_input)}")
if min_pixels or max_pixels:
min_pixels = min_pixels or MIN_PIXELS
max_pixels = max_pixels or MAX_PIXELS
height, width = smart_resize(image.height, image.width, factor=IMAGE_FACTOR, min_pixels=min_pixels, max_pixels=max_pixels)
image = image.resize((width, height), Image.LANCZOS)
return image
@spaces.GPU
def inference(model_name: str, image: Image.Image, text: str, max_new_tokens: int = 1024) -> str:
try:
if model_name == "Camel-Doc-OCR-062825":
processor = processor_m
model = model_m
elif model_name == "Megalodon-OCR-Sync-0713":
processor = processor_t
model = model_t
elif model_name == "Nanonets-OCR-s":
processor = processor_c
model = model_c
elif model_name == "MonkeyOCR-Recognition":
processor = processor_g
model = model_g
else:
raise ValueError(f"Invalid model selected: {model_name}")
if image is None:
yield "Please upload an image.", "Please upload an image."
return
messages = [{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": text},
]
}]
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt_full],
images=[image],
return_tensors="pt",
padding=True,
truncation=False,
max_length=MAX_INPUT_TOKEN_LENGTH
).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer, buffer
except Exception as e:
print(f"Error during inference: {e}")
traceback.print_exc()
yield f"Error during inference: {str(e)}", f"Error during inference: {str(e)}"
def process_image(
model_name: str,
image: Image.Image,
min_pixels: Optional[int] = None,
max_pixels: Optional[int] = None,
max_new_tokens: int = 1024
) -> Dict[str, Any]:
try:
if min_pixels or max_pixels:
image = fetch_image(image, min_pixels=min_pixels, max_pixels=max_pixels)
result = {
'original_image': image,
'raw_output': "",
'layout_result': None,
}
buffer = ""
for raw_output, _ in inference(model_name, image, prompt, max_new_tokens):
buffer = raw_output
result['raw_output'] = buffer
yield result
try:
json_match = re.search(r'```json\s*([\s\S]+?)\s*```', buffer)
json_str = json_match.group(1) if json_match else buffer
layout_data = json.loads(json_str)
result['layout_result'] = layout_data
except json.JSONDecodeError:
print("Failed to parse JSON output")
result['layout_result'] = {"error": "Failed to parse JSON"}
except Exception as e:
print(f"Error processing layout: {e}")
result['layout_result'] = {"error": str(e)}
yield result
except Exception as e:
print(f"Error processing image: {e}")
traceback.print_exc()
result = {
'original_image': image,
'raw_output': f"Error processing image: {str(e)}",
'layout_result': {"error": str(e)}
}
yield result
def load_file_for_preview(file_path: str) -> Tuple[Optional[Image.Image], str]:
if not file_path or not os.path.exists(file_path):
return None, "No file selected"
file_ext = os.path.splitext(file_path)[1].lower()
try:
if file_ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']:
image = Image.open(file_path).convert('RGB')
return image, "Image loaded"
else:
return None, f"Unsupported file format: {file_ext}"
except Exception as e:
print(f"Error loading file: {e}")
return None, f"Error loading file: {str(e)}"
def create_gradio_interface():
css = """
.main-container { max-width: 1400px; margin: 0 auto; }
.header-text { text-align: center; color: #2c3e50; margin-bottom: 20px; }
.process-button {
border: none !important;
color: white !important;
font-weight: bold !important;
background-color: blue !important;}
.process-button:hover {
background-color: darkblue !important;
transform: translateY(-2px) !important;
box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; }
.info-box { border: 1px solid #dee2e6; border-radius: 8px; padding: 15px; margin: 10px 0; }
.page-info { text-align: center; padding: 8px 16px; border-radius: 20px; font-weight: bold; margin: 10px 0; }
.model-status { padding: 10px; border-radius: 8px; margin: 10px 0; text-align: center; font-weight: bold; }
.status-ready { background: #d1edff; color: #0c5460; border: 1px solid #b8daff; }
"""
with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo:
gr.HTML("""
<div class="title" style="text-align: center">
<h1>Dot<span style="color: red;">β</span><strong></strong>OCR Comparator</h1>
<p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;">
Advanced vision-language model for image to markdown document processing
</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
model_choice = gr.Radio(
choices=["Camel-Doc-OCR-062825", "MonkeyOCR-Recognition", "Nanonets-OCR-s", "Megalodon-OCR-Sync-0713"],
label="Select Model",
value="Camel-Doc-OCR-062825"
)
file_input = gr.File(
label="Upload Image",
file_types=[".jpg", ".jpeg", ".png", ".bmp", ".tiff"],
type="filepath"
)
image_preview = gr.Image(label="Preview", type="pil", interactive=False, height=300)
with gr.Accordion("Advanced Settings", open=False):
max_new_tokens = gr.Slider(minimum=1000, maximum=32000, value=24000, step=1000, label="Max New Tokens")
min_pixels = gr.Number(value=MIN_PIXELS, label="Min Pixels")
max_pixels = gr.Number(value=MAX_PIXELS, label="Max Pixels")
process_btn = gr.Button("π Process Document", variant="primary", elem_classes=["process-button"], size="lg")
clear_btn = gr.Button("ποΈ Clear All", variant="secondary")
with gr.Column(scale=2):
with gr.Tabs():
with gr.Tab("π Extracted Content"):
output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=2, show_copy_button=True)
with gr.Tab("π Layout JSON"):
json_output = gr.JSON(label="Layout Analysis Results", value=None)
def process_document(model_name, file_path, max_tokens, min_pix, max_pix):
try:
if not file_path:
return "Please upload an image.", None
image, status = load_file_for_preview(file_path)
if image is None:
return status, None
for result in process_image(model_name, image, min_pixels=int(min_pix) if min_pix else None, max_pixels=int(max_pix) if max_pix else None, max_new_tokens=max_tokens):
raw_output = result['raw_output']
layout_result = result['layout_result']
yield raw_output, layout_result
except Exception as e:
error_msg = f"Error processing document: {str(e)}"
print(error_msg)
traceback.print_exc()
yield error_msg, {"error": str(e)}
def handle_file_upload(file_path):
if not file_path:
return None, "No file loaded"
image, page_info = load_file_for_preview(file_path)
return image, page_info
def clear_all():
return None, None, "No file loaded", None
file_input.change(handle_file_upload, inputs=[file_input], outputs=[image_preview, output])
process_btn.click(
process_document,
inputs=[model_choice, file_input, max_new_tokens, min_pixels, max_pixels],
outputs=[output, json_output]
)
clear_btn.click(
clear_all,
outputs=[file_input, image_preview, output, json_output]
)
return demo
if __name__ == "__main__":
demo = create_gradio_interface()
demo.queue(max_size=10).launch(server_name="0.0.0.0", server_port=7860, share=False, debug=True, show_error=True) |