Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -10,10 +10,6 @@ import numpy as np
|
|
10 |
import time
|
11 |
import zipfile
|
12 |
import os
|
13 |
-
import requests
|
14 |
-
from urllib.parse import urlparse
|
15 |
-
import tempfile
|
16 |
-
import shutil
|
17 |
|
18 |
# Description for the app
|
19 |
DESCRIPTION = """## Qwen Image Hpc/."""
|
@@ -48,45 +44,6 @@ aspect_ratios = {
|
|
48 |
"3:4": (1140, 1472)
|
49 |
}
|
50 |
|
51 |
-
def load_lora_opt(pipe, lora_input):
|
52 |
-
lora_input = lora_input.strip()
|
53 |
-
if not lora_input:
|
54 |
-
return
|
55 |
-
|
56 |
-
# If it's just an ID like "author/model"
|
57 |
-
if "/" in lora_input and not lora_input.startswith("http"):
|
58 |
-
pipe.load_lora_weights(lora_input, adapter_name="default")
|
59 |
-
return
|
60 |
-
|
61 |
-
if lora_input.startswith("http"):
|
62 |
-
url = lora_input
|
63 |
-
|
64 |
-
# Repo page (no blob/resolve)
|
65 |
-
if "huggingface.co" in url and "/blob/" not in url and "/resolve/" not in url:
|
66 |
-
repo_id = urlparse(url).path.strip("/")
|
67 |
-
pipe.load_lora_weights(repo_id, adapter_name="default")
|
68 |
-
return
|
69 |
-
|
70 |
-
# Blob link → convert to resolve link
|
71 |
-
if "/blob/" in url:
|
72 |
-
url = url.replace("/blob/", "/resolve/")
|
73 |
-
|
74 |
-
# Download direct file
|
75 |
-
tmp_dir = tempfile.mkdtemp()
|
76 |
-
local_path = os.path.join(tmp_dir, os.path.basename(urlparse(url).path))
|
77 |
-
|
78 |
-
try:
|
79 |
-
print(f"Downloading LoRA from {url}...")
|
80 |
-
resp = requests.get(url, stream=True)
|
81 |
-
resp.raise_for_status()
|
82 |
-
with open(local_path, "wb") as f:
|
83 |
-
for chunk in resp.iter_content(chunk_size=8192):
|
84 |
-
f.write(chunk)
|
85 |
-
print(f"Saved LoRA to {local_path}")
|
86 |
-
pipe.load_lora_weights(local_path, adapter_name="default")
|
87 |
-
finally:
|
88 |
-
shutil.rmtree(tmp_dir, ignore_errors=True)
|
89 |
-
|
90 |
# Generation function for Qwen/Qwen-Image
|
91 |
@spaces.GPU(duration=120)
|
92 |
def generate_qwen(
|
@@ -100,8 +57,6 @@ def generate_qwen(
|
|
100 |
num_inference_steps: int = 50,
|
101 |
num_images: int = 1,
|
102 |
zip_images: bool = False,
|
103 |
-
lora_input: str = "",
|
104 |
-
lora_scale: float = 1.0,
|
105 |
progress=gr.Progress(track_tqdm=True),
|
106 |
):
|
107 |
if randomize_seed:
|
@@ -109,21 +64,10 @@ def generate_qwen(
|
|
109 |
generator = torch.Generator(device).manual_seed(seed)
|
110 |
|
111 |
start_time = time.time()
|
112 |
-
|
113 |
-
current_adapters = pipe_qwen.get_list_adapters()
|
114 |
-
for adapter in current_adapters:
|
115 |
-
pipe_qwen.delete_adapters(adapter)
|
116 |
-
pipe_qwen.disable_lora()
|
117 |
-
|
118 |
-
use_lora = False
|
119 |
-
if lora_input and lora_input.strip() != "":
|
120 |
-
load_lora_opt(pipe_qwen, lora_input)
|
121 |
-
pipe_qwen.set_adapters(["default"], adapter_weights=[lora_scale])
|
122 |
-
use_lora = True
|
123 |
|
124 |
images = pipe_qwen(
|
125 |
prompt=prompt,
|
126 |
-
negative_prompt=negative_prompt if negative_prompt else
|
127 |
height=height,
|
128 |
width=width,
|
129 |
guidance_scale=guidance_scale,
|
@@ -144,12 +88,6 @@ def generate_qwen(
|
|
144 |
for i, img_path in enumerate(image_paths):
|
145 |
zipf.write(img_path, arcname=f"Img_{i}.png")
|
146 |
zip_path = zip_name
|
147 |
-
|
148 |
-
# Clean up adapters
|
149 |
-
current_adapters = pipe_qwen.get_list_adapters()
|
150 |
-
for adapter in current_adapters:
|
151 |
-
pipe_qwen.delete_adapters(adapter)
|
152 |
-
pipe_qwen.disable_lora()
|
153 |
|
154 |
return image_paths, seed, f"{duration:.2f}", zip_path
|
155 |
|
@@ -167,8 +105,6 @@ def generate(
|
|
167 |
num_inference_steps: int,
|
168 |
num_images: int,
|
169 |
zip_images: bool,
|
170 |
-
lora_input: str,
|
171 |
-
lora_scale: float,
|
172 |
progress=gr.Progress(track_tqdm=True),
|
173 |
):
|
174 |
final_negative_prompt = negative_prompt if use_negative_prompt else ""
|
@@ -183,8 +119,6 @@ def generate(
|
|
183 |
num_inference_steps=num_inference_steps,
|
184 |
num_images=num_images,
|
185 |
zip_images=zip_images,
|
186 |
-
lora_input=lora_input,
|
187 |
-
lora_scale=lora_scale,
|
188 |
progress=progress,
|
189 |
)
|
190 |
|
@@ -212,7 +146,7 @@ footer {
|
|
212 |
'''
|
213 |
|
214 |
# Gradio interface
|
215 |
-
with gr.Blocks(css=css, theme="bethecloud/storj_theme"
|
216 |
gr.Markdown(DESCRIPTION)
|
217 |
with gr.Row():
|
218 |
prompt = gr.Text(
|
@@ -231,7 +165,6 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme", delete_cache=(240, 240))
|
|
231 |
choices=list(aspect_ratios.keys()),
|
232 |
value="1:1",
|
233 |
)
|
234 |
-
lora = gr.Textbox(label="qwen image lora (optional)", placeholder="flymy-ai/qwen-image-anime-irl-lora")
|
235 |
with gr.Accordion("Additional Options", open=False):
|
236 |
use_negative_prompt = gr.Checkbox(
|
237 |
label="Use negative prompt",
|
@@ -290,14 +223,6 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme", delete_cache=(240, 240))
|
|
290 |
value=1,
|
291 |
)
|
292 |
zip_images = gr.Checkbox(label="Zip generated images", value=False)
|
293 |
-
with gr.Row():
|
294 |
-
lora_scale = gr.Slider(
|
295 |
-
label="LoRA Scale",
|
296 |
-
minimum=0,
|
297 |
-
maximum=2,
|
298 |
-
step=0.01,
|
299 |
-
value=1,
|
300 |
-
)
|
301 |
|
302 |
gr.Markdown("### Output Information")
|
303 |
seed_display = gr.Textbox(label="Seed used", interactive=False)
|
@@ -338,8 +263,6 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme", delete_cache=(240, 240))
|
|
338 |
num_inference_steps,
|
339 |
num_images,
|
340 |
zip_images,
|
341 |
-
lora,
|
342 |
-
lora_scale,
|
343 |
],
|
344 |
outputs=[result, seed_display, generation_time, zip_file],
|
345 |
api_name="run",
|
@@ -355,4 +278,4 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme", delete_cache=(240, 240))
|
|
355 |
)
|
356 |
|
357 |
if __name__ == "__main__":
|
358 |
-
demo.queue(max_size=50).launch(share=False, mcp_server=True, ssr_mode=False,
|
|
|
10 |
import time
|
11 |
import zipfile
|
12 |
import os
|
|
|
|
|
|
|
|
|
13 |
|
14 |
# Description for the app
|
15 |
DESCRIPTION = """## Qwen Image Hpc/."""
|
|
|
44 |
"3:4": (1140, 1472)
|
45 |
}
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
# Generation function for Qwen/Qwen-Image
|
48 |
@spaces.GPU(duration=120)
|
49 |
def generate_qwen(
|
|
|
57 |
num_inference_steps: int = 50,
|
58 |
num_images: int = 1,
|
59 |
zip_images: bool = False,
|
|
|
|
|
60 |
progress=gr.Progress(track_tqdm=True),
|
61 |
):
|
62 |
if randomize_seed:
|
|
|
64 |
generator = torch.Generator(device).manual_seed(seed)
|
65 |
|
66 |
start_time = time.time()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
images = pipe_qwen(
|
69 |
prompt=prompt,
|
70 |
+
negative_prompt=negative_prompt if negative_prompt else None,
|
71 |
height=height,
|
72 |
width=width,
|
73 |
guidance_scale=guidance_scale,
|
|
|
88 |
for i, img_path in enumerate(image_paths):
|
89 |
zipf.write(img_path, arcname=f"Img_{i}.png")
|
90 |
zip_path = zip_name
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
return image_paths, seed, f"{duration:.2f}", zip_path
|
93 |
|
|
|
105 |
num_inference_steps: int,
|
106 |
num_images: int,
|
107 |
zip_images: bool,
|
|
|
|
|
108 |
progress=gr.Progress(track_tqdm=True),
|
109 |
):
|
110 |
final_negative_prompt = negative_prompt if use_negative_prompt else ""
|
|
|
119 |
num_inference_steps=num_inference_steps,
|
120 |
num_images=num_images,
|
121 |
zip_images=zip_images,
|
|
|
|
|
122 |
progress=progress,
|
123 |
)
|
124 |
|
|
|
146 |
'''
|
147 |
|
148 |
# Gradio interface
|
149 |
+
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
150 |
gr.Markdown(DESCRIPTION)
|
151 |
with gr.Row():
|
152 |
prompt = gr.Text(
|
|
|
165 |
choices=list(aspect_ratios.keys()),
|
166 |
value="1:1",
|
167 |
)
|
|
|
168 |
with gr.Accordion("Additional Options", open=False):
|
169 |
use_negative_prompt = gr.Checkbox(
|
170 |
label="Use negative prompt",
|
|
|
223 |
value=1,
|
224 |
)
|
225 |
zip_images = gr.Checkbox(label="Zip generated images", value=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
|
227 |
gr.Markdown("### Output Information")
|
228 |
seed_display = gr.Textbox(label="Seed used", interactive=False)
|
|
|
263 |
num_inference_steps,
|
264 |
num_images,
|
265 |
zip_images,
|
|
|
|
|
266 |
],
|
267 |
outputs=[result, seed_display, generation_time, zip_file],
|
268 |
api_name="run",
|
|
|
278 |
)
|
279 |
|
280 |
if __name__ == "__main__":
|
281 |
+
demo.queue(max_size=50).launch(share=False, mcp_server=True, ssr_mode=False, show_error=True)
|