Spaces:
Running
on
Zero
Running
on
Zero
Delete app.py
Browse files
app.py
DELETED
@@ -1,394 +0,0 @@
|
|
1 |
-
import spaces
|
2 |
-
import gradio as gr
|
3 |
-
import torch
|
4 |
-
from PIL import Image
|
5 |
-
from diffusers import DiffusionPipeline, QwenImageEditPipeline, FlowMatchEulerDiscreteScheduler
|
6 |
-
import random
|
7 |
-
import uuid
|
8 |
-
import numpy as np
|
9 |
-
import time
|
10 |
-
import zipfile
|
11 |
-
import os
|
12 |
-
import requests
|
13 |
-
from urllib.parse import urlparse
|
14 |
-
import tempfile
|
15 |
-
import shutil
|
16 |
-
import math
|
17 |
-
|
18 |
-
# --- App Description ---
|
19 |
-
DESCRIPTION = """## Qwen Image Hpc/."""
|
20 |
-
|
21 |
-
# --- Helper Functions for Both Tabs ---
|
22 |
-
MAX_SEED = np.iinfo(np.int32).max
|
23 |
-
|
24 |
-
def save_image(img):
|
25 |
-
"""Saves a PIL image to a temporary file with a unique name."""
|
26 |
-
unique_name = str(uuid.uuid4()) + ".png"
|
27 |
-
img.save(unique_name)
|
28 |
-
return unique_name
|
29 |
-
|
30 |
-
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
31 |
-
"""Returns a random seed if randomize_seed is True, otherwise returns the original seed."""
|
32 |
-
if randomize_seed:
|
33 |
-
seed = random.randint(0, MAX_SEED)
|
34 |
-
return seed
|
35 |
-
|
36 |
-
# --- Model Loading ---
|
37 |
-
dtype = torch.bfloat16
|
38 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
39 |
-
|
40 |
-
# --- Qwen-Image-Gen Model ---
|
41 |
-
pipe_qwen_gen = DiffusionPipeline.from_pretrained(
|
42 |
-
"Qwen/Qwen-Image",
|
43 |
-
torch_dtype=dtype
|
44 |
-
).to(device)
|
45 |
-
|
46 |
-
# --- Qwen-Image-Edit Model with Lightning LoRA ---
|
47 |
-
scheduler_config = {
|
48 |
-
"base_image_seq_len": 256,
|
49 |
-
"base_shift": math.log(3),
|
50 |
-
"invert_sigmas": False,
|
51 |
-
"max_image_seq_len": 8192,
|
52 |
-
"max_shift": math.log(3),
|
53 |
-
"num_train_timesteps": 1000,
|
54 |
-
"shift": 1.0,
|
55 |
-
"shift_terminal": None,
|
56 |
-
"stochastic_sampling": False,
|
57 |
-
"time_shift_type": "exponential",
|
58 |
-
"use_beta_sigmas": False,
|
59 |
-
"use_dynamic_shifting": True,
|
60 |
-
"use_exponential_sigmas": False,
|
61 |
-
"use_karras_sigmas": False,
|
62 |
-
}
|
63 |
-
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
|
64 |
-
|
65 |
-
pipe_qwen_edit = QwenImageEditPipeline.from_pretrained(
|
66 |
-
"Qwen/Qwen-Image-Edit",
|
67 |
-
scheduler=scheduler,
|
68 |
-
torch_dtype=dtype
|
69 |
-
).to(device)
|
70 |
-
|
71 |
-
try:
|
72 |
-
pipe_qwen_edit.load_lora_weights(
|
73 |
-
"lightx2v/Qwen-Image-Lightning",
|
74 |
-
weight_name="Qwen-Image-Lightning-8steps-V1.1.safetensors"
|
75 |
-
)
|
76 |
-
pipe_qwen_edit.fuse_lora()
|
77 |
-
print("Successfully loaded Lightning LoRA weights for Qwen-Image-Edit")
|
78 |
-
except Exception as e:
|
79 |
-
print(f"Warning: Could not load Lightning LoRA weights for Qwen-Image-Edit: {e}")
|
80 |
-
print("Continuing with the base Qwen-Image-Edit model...")
|
81 |
-
|
82 |
-
|
83 |
-
# --- Qwen-Image-Gen Functions ---
|
84 |
-
aspect_ratios = {
|
85 |
-
"1:1": (1328, 1328),
|
86 |
-
"16:9": (1664, 928),
|
87 |
-
"9:16": (928, 1664),
|
88 |
-
"4:3": (1472, 1140),
|
89 |
-
"3:4": (1140, 1472)
|
90 |
-
}
|
91 |
-
|
92 |
-
def load_lora_opt(pipe, lora_input):
|
93 |
-
"""Loads a LoRA from a local path, Hugging Face repo, or URL."""
|
94 |
-
lora_input = lora_input.strip()
|
95 |
-
if not lora_input:
|
96 |
-
return
|
97 |
-
|
98 |
-
if "/" in lora_input and not lora_input.startswith("http"):
|
99 |
-
pipe.load_lora_weights(lora_input, adapter_name="default")
|
100 |
-
return
|
101 |
-
|
102 |
-
if lora_input.startswith("http"):
|
103 |
-
url = lora_input
|
104 |
-
if "huggingface.co" in url and "/blob/" not in url and "/resolve/" not in url:
|
105 |
-
repo_id = urlparse(url).path.strip("/")
|
106 |
-
pipe.load_lora_weights(repo_id, adapter_name="default")
|
107 |
-
return
|
108 |
-
|
109 |
-
if "/blob/" in url:
|
110 |
-
url = url.replace("/blob/", "/resolve/")
|
111 |
-
|
112 |
-
tmp_dir = tempfile.mkdtemp()
|
113 |
-
local_path = os.path.join(tmp_dir, os.path.basename(urlparse(url).path))
|
114 |
-
|
115 |
-
try:
|
116 |
-
print(f"Downloading LoRA from {url}...")
|
117 |
-
resp = requests.get(url, stream=True)
|
118 |
-
resp.raise_for_status()
|
119 |
-
with open(local_path, "wb") as f:
|
120 |
-
for chunk in resp.iter_content(chunk_size=8192):
|
121 |
-
f.write(chunk)
|
122 |
-
print(f"Saved LoRA to {local_path}")
|
123 |
-
pipe.load_lora_weights(local_path, adapter_name="default")
|
124 |
-
finally:
|
125 |
-
shutil.rmtree(tmp_dir, ignore_errors=True)
|
126 |
-
|
127 |
-
@spaces.GPU(duration=120)
|
128 |
-
def generate_qwen(
|
129 |
-
prompt: str,
|
130 |
-
negative_prompt: str = "",
|
131 |
-
seed: int = 0,
|
132 |
-
width: int = 1024,
|
133 |
-
height: int = 1024,
|
134 |
-
guidance_scale: float = 4.0,
|
135 |
-
randomize_seed: bool = False,
|
136 |
-
num_inference_steps: int = 50,
|
137 |
-
num_images: int = 1,
|
138 |
-
zip_images: bool = False,
|
139 |
-
lora_input: str = "",
|
140 |
-
lora_scale: float = 1.0,
|
141 |
-
progress=gr.Progress(track_tqdm=True),
|
142 |
-
):
|
143 |
-
"""Main generation function for Qwen-Image-Gen."""
|
144 |
-
seed = randomize_seed_fn(seed, randomize_seed)
|
145 |
-
generator = torch.Generator(device).manual_seed(seed)
|
146 |
-
|
147 |
-
start_time = time.time()
|
148 |
-
|
149 |
-
current_adapters = pipe_qwen_gen.get_list_adapters()
|
150 |
-
for adapter in current_adapters:
|
151 |
-
pipe_qwen_gen.delete_adapters(adapter)
|
152 |
-
pipe_qwen_gen.disable_lora()
|
153 |
-
|
154 |
-
if lora_input and lora_input.strip() != "":
|
155 |
-
load_lora_opt(pipe_qwen_gen, lora_input)
|
156 |
-
pipe_qwen_gen.set_adapters(["default"], adapter_weights=[lora_scale])
|
157 |
-
|
158 |
-
images = pipe_qwen_gen(
|
159 |
-
prompt=prompt,
|
160 |
-
negative_prompt=negative_prompt if negative_prompt else " ",
|
161 |
-
height=height,
|
162 |
-
width=width,
|
163 |
-
guidance_scale=guidance_scale,
|
164 |
-
num_inference_steps=num_inference_steps,
|
165 |
-
num_images_per_prompt=num_images,
|
166 |
-
generator=generator,
|
167 |
-
).images
|
168 |
-
|
169 |
-
end_time = time.time()
|
170 |
-
duration = end_time - start_time
|
171 |
-
|
172 |
-
image_paths = [save_image(img) for img in images]
|
173 |
-
zip_path = None
|
174 |
-
if zip_images and len(image_paths) > 0:
|
175 |
-
zip_name = str(uuid.uuid4()) + ".zip"
|
176 |
-
with zipfile.ZipFile(zip_name, 'w') as zipf:
|
177 |
-
for i, img_path in enumerate(image_paths):
|
178 |
-
zipf.write(img_path, arcname=f"Img_{i}.png")
|
179 |
-
zip_path = zip_name
|
180 |
-
|
181 |
-
current_adapters = pipe_qwen_gen.get_list_adapters()
|
182 |
-
for adapter in current_adapters:
|
183 |
-
pipe_qwen_gen.delete_adapters(adapter)
|
184 |
-
pipe_qwen_gen.disable_lora()
|
185 |
-
|
186 |
-
return image_paths, seed, f"{duration:.2f}", zip_path
|
187 |
-
|
188 |
-
@spaces.GPU(duration=120)
|
189 |
-
def generate(
|
190 |
-
prompt: str,
|
191 |
-
negative_prompt: str,
|
192 |
-
use_negative_prompt: bool,
|
193 |
-
seed: int,
|
194 |
-
width: int,
|
195 |
-
height: int,
|
196 |
-
guidance_scale: float,
|
197 |
-
randomize_seed: bool,
|
198 |
-
num_inference_steps: int,
|
199 |
-
num_images: int,
|
200 |
-
zip_images: bool,
|
201 |
-
lora_input: str,
|
202 |
-
lora_scale: float,
|
203 |
-
progress=gr.Progress(track_tqdm=True),
|
204 |
-
):
|
205 |
-
"""UI wrapper for the Qwen-Image-Gen generation function."""
|
206 |
-
final_negative_prompt = negative_prompt if use_negative_prompt else ""
|
207 |
-
return generate_qwen(
|
208 |
-
prompt=prompt,
|
209 |
-
negative_prompt=final_negative_prompt,
|
210 |
-
seed=seed,
|
211 |
-
width=width,
|
212 |
-
height=height,
|
213 |
-
guidance_scale=guidance_scale,
|
214 |
-
randomize_seed=randomize_seed,
|
215 |
-
num_inference_steps=num_inference_steps,
|
216 |
-
num_images=num_images,
|
217 |
-
zip_images=zip_images,
|
218 |
-
lora_input=lora_input,
|
219 |
-
lora_scale=lora_scale,
|
220 |
-
progress=progress,
|
221 |
-
)
|
222 |
-
|
223 |
-
# --- Qwen-Image-Edit Functions ---
|
224 |
-
@spaces.GPU(duration=60)
|
225 |
-
def infer_edit(
|
226 |
-
image,
|
227 |
-
prompt,
|
228 |
-
seed=42,
|
229 |
-
randomize_seed=False,
|
230 |
-
true_guidance_scale=1.0,
|
231 |
-
num_inference_steps=8,
|
232 |
-
progress=gr.Progress(track_tqdm=True),
|
233 |
-
):
|
234 |
-
"""Main inference function for Qwen-Image-Edit."""
|
235 |
-
if image is None:
|
236 |
-
raise gr.Error("Please upload an image to edit.")
|
237 |
-
|
238 |
-
negative_prompt = " "
|
239 |
-
seed = randomize_seed_fn(seed, randomize_seed)
|
240 |
-
generator = torch.Generator(device=device).manual_seed(seed)
|
241 |
-
|
242 |
-
print(f"Original prompt: '{prompt}'")
|
243 |
-
print(f"Negative Prompt: '{negative_prompt}'")
|
244 |
-
print(f"Seed: {seed}, Steps: {num_inference_steps}, Guidance: {true_guidance_scale}")
|
245 |
-
|
246 |
-
try:
|
247 |
-
images = pipe_qwen_edit(
|
248 |
-
image,
|
249 |
-
prompt=prompt,
|
250 |
-
negative_prompt=negative_prompt,
|
251 |
-
num_inference_steps=num_inference_steps,
|
252 |
-
generator=generator,
|
253 |
-
true_cfg_scale=true_guidance_scale,
|
254 |
-
num_images_per_prompt=1
|
255 |
-
).images
|
256 |
-
return images[0], seed
|
257 |
-
except Exception as e:
|
258 |
-
print(f"Error during inference: {e}")
|
259 |
-
raise gr.Error(f"An error occurred during image editing: {e}")
|
260 |
-
|
261 |
-
# --- Gradio UI ---
|
262 |
-
css = '''
|
263 |
-
.gradio-container {
|
264 |
-
max-width: 800px !important;
|
265 |
-
margin: 0 auto !important;
|
266 |
-
}
|
267 |
-
h1 {
|
268 |
-
text-align: center;
|
269 |
-
}
|
270 |
-
footer {
|
271 |
-
visibility: hidden;
|
272 |
-
}
|
273 |
-
'''
|
274 |
-
|
275 |
-
with gr.Blocks(css=css, theme="bethecloud/storj_theme", delete_cache=(240, 240)) as demo:
|
276 |
-
gr.Markdown(DESCRIPTION)
|
277 |
-
|
278 |
-
with gr.Tabs():
|
279 |
-
with gr.TabItem("Qwen-Image-Gen"):
|
280 |
-
with gr.Column():
|
281 |
-
with gr.Row():
|
282 |
-
prompt_gen = gr.Text(
|
283 |
-
label="Prompt",
|
284 |
-
show_label=False,
|
285 |
-
max_lines=1,
|
286 |
-
placeholder="✦︎ Enter your prompt for generation",
|
287 |
-
container=False,
|
288 |
-
)
|
289 |
-
run_button_gen = gr.Button("Generate", scale=0, variant="primary")
|
290 |
-
result_gen = gr.Gallery(label="Result", columns=2, show_label=False, preview=True, height="auto")
|
291 |
-
|
292 |
-
with gr.Row():
|
293 |
-
aspect_ratio_gen = gr.Dropdown(
|
294 |
-
label="Aspect Ratio",
|
295 |
-
choices=list(aspect_ratios.keys()),
|
296 |
-
value="1:1",
|
297 |
-
)
|
298 |
-
lora_gen = gr.Textbox(label="Optional LoRA", placeholder="Enter Hugging Face repo ID or URL...")
|
299 |
-
|
300 |
-
with gr.Accordion("Additional Options", open=False):
|
301 |
-
use_negative_prompt_gen = gr.Checkbox(label="Use negative prompt", value=True)
|
302 |
-
negative_prompt_gen = gr.Text(
|
303 |
-
label="Negative prompt",
|
304 |
-
max_lines=1,
|
305 |
-
placeholder="Enter a negative prompt",
|
306 |
-
value="text, watermark, copyright, blurry, low resolution",
|
307 |
-
)
|
308 |
-
seed_gen = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
309 |
-
randomize_seed_gen = gr.Checkbox(label="Randomize seed", value=True)
|
310 |
-
with gr.Row():
|
311 |
-
width_gen = gr.Slider(label="Width", minimum=512, maximum=2048, step=64, value=1328)
|
312 |
-
height_gen = gr.Slider(label="Height", minimum=512, maximum=2048, step=64, value=1328)
|
313 |
-
guidance_scale_gen = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=20.0, step=0.1, value=4.0)
|
314 |
-
num_inference_steps_gen = gr.Slider("Number of inference steps", 1, 100, 50, step=1)
|
315 |
-
num_images_gen = gr.Slider("Number of images", 1, 5, 1, step=1)
|
316 |
-
zip_images_gen = gr.Checkbox(label="Zip generated images", value=False)
|
317 |
-
with gr.Row():
|
318 |
-
lora_scale_gen = gr.Slider(label="LoRA Scale", minimum=0, maximum=2, step=0.01, value=1)
|
319 |
-
|
320 |
-
gr.Markdown("### Output Information")
|
321 |
-
seed_display_gen = gr.Textbox(label="Seed used", interactive=False)
|
322 |
-
generation_time_gen = gr.Textbox(label="Generation time (seconds)", interactive=False)
|
323 |
-
zip_file_gen = gr.File(label="Download ZIP")
|
324 |
-
|
325 |
-
# --- Gen Tab Logic ---
|
326 |
-
def set_dimensions(ar):
|
327 |
-
w, h = aspect_ratios[ar]
|
328 |
-
return gr.update(value=w), gr.update(value=h)
|
329 |
-
|
330 |
-
aspect_ratio_gen.change(fn=set_dimensions, inputs=aspect_ratio_gen, outputs=[width_gen, height_gen])
|
331 |
-
use_negative_prompt_gen.change(fn=lambda x: gr.update(visible=x), inputs=use_negative_prompt_gen, outputs=negative_prompt_gen)
|
332 |
-
|
333 |
-
gen_inputs = [
|
334 |
-
prompt_gen, negative_prompt_gen, use_negative_prompt_gen, seed_gen, width_gen, height_gen,
|
335 |
-
guidance_scale_gen, randomize_seed_gen, num_inference_steps_gen, num_images_gen,
|
336 |
-
zip_images_gen, lora_gen, lora_scale_gen
|
337 |
-
]
|
338 |
-
gen_outputs = [result_gen, seed_display_gen, generation_time_gen, zip_file_gen]
|
339 |
-
|
340 |
-
gr.on(triggers=[prompt_gen.submit, run_button_gen.click], fn=generate, inputs=gen_inputs, outputs=gen_outputs)
|
341 |
-
|
342 |
-
gen_examples = [
|
343 |
-
"A decadent slice of layered chocolate cake on a ceramic plate with a drizzle of chocolate syrup and powdered sugar dusted on top.",
|
344 |
-
"A young girl wearing school uniform stands in a classroom, writing on a chalkboard. The text 'Introducing Qwen-Image' appears in neat white chalk.",
|
345 |
-
"一幅精致细腻的工笔画,画面中心是一株蓬勃生长的红色牡丹,花朵繁茂。",
|
346 |
-
"Realistic still life photography style: A single, fresh apple, resting on a clean, soft-textured surface.",
|
347 |
-
]
|
348 |
-
gr.Examples(examples=gen_examples, inputs=prompt_gen, outputs=gen_outputs, fn=generate, cache_examples=False)
|
349 |
-
|
350 |
-
with gr.TabItem("Qwen-Image-Edit"):
|
351 |
-
with gr.Column():
|
352 |
-
with gr.Row():
|
353 |
-
input_image_edit = gr.Image(label="Input Image", type="pil", height=400)
|
354 |
-
result_edit = gr.Image(label="Result", type="pil", height=400)
|
355 |
-
|
356 |
-
with gr.Row():
|
357 |
-
prompt_edit = gr.Text(
|
358 |
-
label="Edit Instruction",
|
359 |
-
show_label=False,
|
360 |
-
placeholder="Describe the edit you want to make",
|
361 |
-
container=False,
|
362 |
-
)
|
363 |
-
run_button_edit = gr.Button("Edit", variant="primary")
|
364 |
-
|
365 |
-
with gr.Accordion("Advanced Settings", open=False):
|
366 |
-
seed_edit = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
|
367 |
-
randomize_seed_edit = gr.Checkbox(label="Randomize seed", value=True)
|
368 |
-
with gr.Row():
|
369 |
-
true_guidance_scale_edit = gr.Slider(
|
370 |
-
label="True guidance scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0
|
371 |
-
)
|
372 |
-
num_inference_steps_edit = gr.Slider(
|
373 |
-
label="Inference steps (Lightning LoRA)", minimum=4, maximum=28, step=1, value=8
|
374 |
-
)
|
375 |
-
|
376 |
-
# --- Edit Tab Logic ---
|
377 |
-
edit_inputs = [
|
378 |
-
input_image_edit, prompt_edit, seed_edit, randomize_seed_edit,
|
379 |
-
true_guidance_scale_edit, num_inference_steps_edit
|
380 |
-
]
|
381 |
-
edit_outputs = [result_edit, seed_edit]
|
382 |
-
|
383 |
-
gr.on(triggers=[prompt_edit.submit, run_button_edit.click], fn=infer_edit, inputs=edit_inputs, outputs=edit_outputs)
|
384 |
-
|
385 |
-
edit_examples = [
|
386 |
-
["image-edit/cat.png", "make the cat wear sunglasses"],
|
387 |
-
["image-edit/girl.png", "change her hair to blonde"],
|
388 |
-
]
|
389 |
-
|
390 |
-
gr.Examples(examples=edit_examples, inputs=[input_image_edit, prompt_edit], outputs=edit_outputs, fn=infer_edit, cache_examples=True)
|
391 |
-
|
392 |
-
|
393 |
-
if __name__ == "__main__":
|
394 |
-
demo.queue(max_size=50).launch(share=False, debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|