prithivMLmods's picture
upload app (#2)
d8019dd verified
raw
history blame
6.95 kB
import os
import time
import threading
import gradio as gr
import spaces
import torch
from PIL import Image
from transformers import (
AutoModelForImageTextToText,
AutoProcessor,
TextIteratorStreamer,
)
from transformers.image_utils import load_image
# Constants for text generation
MAX_MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load LFM2-VL-1.6B
MODEL_ID_M = "LiquidAI/LFM2-VL-1.6B"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = AutoModelForImageTextToText.from_pretrained(
MODEL_ID_M,
trust_remote_code=True,
torch_dtype="bfloat16",
).to(device).eval()
# Load LFM2-VL-450M
MODEL_ID_T = "LiquidAI/LFM2-VL-450M"
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
model_t = AutoModelForImageTextToText.from_pretrained(
MODEL_ID_T,
trust_remote_code=True,
torch_dtype="bfloat16",
).to(device).eval()
@spaces.GPU
def generate_image(model_name: str, text: str, image: Image.Image,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
"""
Generate responses using the selected model for image input.
"""
if model_name == "LFM2-VL-1.6B":
processor = processor_m
model = model_m
elif model_name == "LFM2-VL-450M":
processor = processor_t
model = model_t
else:
yield "Invalid model selected.", "Invalid model selected."
return
if image is None:
yield "Please upload an image.", "Please upload an image."
return
messages = [{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": text},
]
}]
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt_full],
images=[image],
return_tensors="pt",
padding=True,
truncation=False,
max_length=MAX_INPUT_TOKEN_LENGTH
).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer, buffer
# Define examples for image inference
image_examples = [
["According to this diagram, where do severe droughts occur?", "images/1.png"],
["Could you describe this image?", "images/2.jpg"],
["Provide a description of this image.", "images/3.jpg"],
["Explain the movie shot in detail.", "images/4.png"],
]
# Updated CSS with model choice highlighting
css = """
.submit-btn {
background-color: #2980b9 !important;
color: white !important;
}
.submit-btn:hover {
background-color: #3498db !important;
}
.canvas-output {
border: 2px solid #4682B4;
border-radius: 10px;
padding: 20px;
}
"""
# Create the Gradio Interface
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
gr.Markdown("# **LFM2-VL by [LiquidAI](https://huggingface.co/collections/LiquidAI/lfm2-vl-68963bbc84a610f7638d5ffa)**")
with gr.Row():
with gr.Column():
image_query = gr.Textbox(label="Query Input", placeholder="✦︎ Enter your query")
image_upload = gr.Image(type="pil", label="Image")
image_submit = gr.Button("Submit", elem_classes="submit-btn")
gr.Examples(
examples=image_examples,
inputs=[image_query, image_upload]
)
with gr.Accordion("Advanced options", open=False):
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
with gr.Column():
with gr.Column(elem_classes="canvas-output"):
gr.Markdown("## Output")
output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=2)
with gr.Accordion("(Result.md)", open=False):
markdown_output = gr.Markdown(label="(Result.md)")
model_choice = gr.Dropdown(
choices=["LFM2-VL-1.6B", "LFM2-VL-450M"],
label="Select Model",
value="LFM2-VL-1.6B"
)
gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/LFM2-VL-Demo/discussions)")
gr.Markdown("> [LFM2‑VL](https://huggingface.co/collections/LiquidAI/lfm2-vl-68963bbc84a610f7638d5ffa) is [Liquid AI’s](https://huggingface.co/LiquidAI) first multimodal model series, featuring models with 450M and 1.6B parameters designed for efficient processing of both text and images at native resolutions up to 512×512, ideal for low-latency edge AI applications; leveraging a hybrid conv+attention LFM2 backbone and SigLIP2 NaFlex vision encoders, it delivers flexible, user-tunable inference with rapid speeds (2× faster than existing VLMs on GPU)")
gr.Markdown("> Competitive accuracy, and dynamic image tokenization for scalable throughput, while supporting 32,768 text tokens and English language generation, and is best fine-tuned for targeted use cases using provided supervised fine-tuning tools, all released under the LFM Open License v1.0 for research and deployment scenarios not requiring safety-critical guarantees.")
# Define the submit button action
image_submit.click(fn=generate_image,
inputs=[
model_choice, image_query, image_upload,
max_new_tokens, temperature, top_p, top_k,
repetition_penalty
],
outputs=[output, markdown_output])
if __name__ == "__main__":
demo.queue(max_size=50).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True)