|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("ByteDance-Seed/UI-TARS-1.5-7B") |
|
model = AutoModelForCausalLM.from_pretrained("ByteDance-Seed/UI-TARS-1.5-7B") |
|
|
|
def predict(ui_context, goal): |
|
prompt = f"<context>{ui_context}</context>\n<task>{goal}</task>" |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
outputs = model.generate(**inputs, max_new_tokens=128) |
|
return tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
gr.Interface(fn=predict, |
|
inputs=["textbox", "textbox"], |
|
outputs="textbox", |
|
title="UITARS 1.5 Action Predictor" |
|
).launch() |
|
|