Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
from transformers import AutoTokenizer, ViTImageProcessor, VisionEncoderDecoderModel | |
device = 'cpu' | |
# Load the pretrained model, feature extractor, and tokenizer | |
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning").to(device) | |
feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning") | |
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning") | |
def predict(image, max_length=64, num_beams=4): | |
# Process the input image | |
image = image.convert('RGB') | |
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values.to(device) | |
# Generate the caption | |
caption_ids = model.generate(pixel_values, max_length=max_length, num_beams=num_beams)[0] | |
# Decode and clean the generated caption | |
caption = tokenizer.decode(caption_ids, skip_special_tokens=True) | |
return caption | |
css = ''' | |
h1#title { | |
text-align: center; | |
} | |
h3#header { | |
text-align: center; | |
} | |
img#overview { | |
max-width: 800px; | |
max-height: 600px; | |
} | |
img#style-image { | |
max-width: 1000px; | |
max-height: 600px; | |
} | |
''' | |
demo = gr.Blocks(css=css) | |
with demo: | |
gr.Markdown('''<h1 id="title">Automated Image Captioning Using Generative AI: A Transformer based approach 🖼️</h1>''') | |
gr.Markdown('Contributed by : Premanth Alahari, Charan Gudivada') | |
with gr.Column(): | |
input_image = gr.Image(label="Upload your Image", type='pil') | |
output_caption = gr.Textbox(label="Generated Caption") | |
btn = gr.Button("Generate Caption") | |
btn.click(fn=predict, inputs=input_image, outputs=output_caption) | |
with demo: | |
gr.Markdown('''<h1 id="title">Features:</h1>''') | |
gr.Markdown('1. Drop the Image Here or Click on Upload 2. Click to Access Webcam 3. Paste from Clipboard’) | |
demo.launch() |