Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from transformers import pipeline | |
| # model repo ID | |
| model_id = "prd101-wd/phi1_5-bankingqa-merged" | |
| # Load model only once | |
| def load_model(): | |
| #return pipeline("question-answering", model=model_id) | |
| return pipeline("text-generation", model=model_id, trust_remote_code=True) | |
| # Create a text generation pipeline | |
| pipe = load_model() | |
| # Streamlit UI | |
| st.title("Banking HelpDesk from Finetuned Phi1-5") | |
| st.markdown("Ask a question and the fine-tuned Phi-1.5 model will answer.") | |
| user_input = st.text_area("Your question:", height=100) | |
| if st.button("Ask"): | |
| if user_input.strip(): | |
| # Format the prompt like Alpaca-style | |
| prompt = f"### Instruction:\n{user_input}\n\n### Response:\n" | |
| output = pipe(prompt, max_new_tokens=200, do_sample=True, temperature=0.7) | |
| # Process output | |
| if isinstance(output, list) and output: | |
| answer = output[0]['generated_text'] | |
| # Extract only the response part | |
| if "### Response:" in answer: | |
| answer = answer.split("### Response:")[-1].strip() | |
| else: | |
| answer = "Unable to generate a response. Please try again." | |
| # if isinstance(output, list) and len(output) > 0 and "generated_text" in output[0]: | |
| # answer = output[0]["generated_text"] | |
| # else: | |
| # answer = "Unable to generate a response. Please try again." | |
| # Extract only the model's response (remove prompt part if included in output) | |
| #answer = output.split("### Response:")[-1].strip() | |
| # if isinstance(output, str): | |
| # answer = output.split("### Response:")[-1].strip() | |
| # else: | |
| # answer = "Unexpected output format. Please try again." | |
| st.markdown("### HelpdeskBot Answer:") | |
| st.success(answer) | |
| else: | |
| st.warning("Please enter a question.") | |