from transformers import DetrImageProcessor, DetrForObjectDetection from PIL import Image, ImageDraw import torch import gradio as gr import requests from io import BytesIO # Load pre-trained DETR model processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50") # COCO class index for "person" = 1 (used as proxy for face detection) FACE_CLASS_INDEX = 1 def detect_faces(img: Image.Image): # Prepare input for the model inputs = processor(images=img, return_tensors="pt") outputs = model(**inputs) # Get outputs target_sizes = torch.tensor([img.size[::-1]]) results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0] # Draw bounding boxes draw = ImageDraw.Draw(img) for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): if label.item() == FACE_CLASS_INDEX: # 'person' box = [round(i, 2) for i in box.tolist()] draw.rectangle(box, outline="green", width=3) draw.text((box[0], box[1]), f"{score:.2f}", fill="green") return img # Gradio interface iface = gr.Interface( fn=detect_faces, inputs=gr.Image(type="pil"), outputs="image", title="Face Detection App (Hugging Face + Gradio)", description="Upload an image and detect faces using facebook/detr-resnet-50 model." ) iface.launch()