Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,42 +2,43 @@ from transformers import DetrImageProcessor, DetrForObjectDetection
|
|
2 |
from PIL import Image, ImageDraw
|
3 |
import torch
|
4 |
import gradio as gr
|
5 |
-
import requests
|
6 |
-
from io import BytesIO
|
7 |
|
8 |
-
# Load
|
9 |
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
10 |
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
|
11 |
|
12 |
-
# COCO class
|
13 |
-
FACE_CLASS_INDEX = 1
|
14 |
|
15 |
def detect_faces(img: Image.Image):
|
16 |
-
#
|
|
|
|
|
|
|
|
|
17 |
inputs = processor(images=img, return_tensors="pt")
|
18 |
outputs = model(**inputs)
|
19 |
|
20 |
-
# Get
|
21 |
target_sizes = torch.tensor([img.size[::-1]])
|
22 |
-
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.
|
23 |
|
24 |
-
|
25 |
-
draw = ImageDraw.Draw(img)
|
26 |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
27 |
-
if label.item() == FACE_CLASS_INDEX:
|
|
|
28 |
box = [round(i, 2) for i in box.tolist()]
|
29 |
-
draw.rectangle(box, outline="
|
30 |
-
draw.text((box[0], box[1]), f"{score:.2f}", fill="
|
31 |
|
32 |
-
return
|
33 |
|
34 |
-
# Gradio
|
35 |
iface = gr.Interface(
|
36 |
fn=detect_faces,
|
37 |
inputs=gr.Image(type="pil"),
|
38 |
-
outputs="
|
39 |
-
title="
|
40 |
-
description="
|
41 |
)
|
42 |
|
43 |
iface.launch()
|
|
|
2 |
from PIL import Image, ImageDraw
|
3 |
import torch
|
4 |
import gradio as gr
|
|
|
|
|
5 |
|
6 |
+
# Load model and processor
|
7 |
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
8 |
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
|
9 |
|
10 |
+
FACE_CLASS_INDEX = 1 # COCO class ID for 'person'
|
|
|
11 |
|
12 |
def detect_faces(img: Image.Image):
|
13 |
+
# Make a copy to draw on
|
14 |
+
img_draw = img.copy()
|
15 |
+
draw = ImageDraw.Draw(img_draw)
|
16 |
+
|
17 |
+
# Preprocess and predict
|
18 |
inputs = processor(images=img, return_tensors="pt")
|
19 |
outputs = model(**inputs)
|
20 |
|
21 |
+
# Get results
|
22 |
target_sizes = torch.tensor([img.size[::-1]])
|
23 |
+
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.8)[0]
|
24 |
|
25 |
+
count = 0
|
|
|
26 |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
27 |
+
if label.item() == FACE_CLASS_INDEX:
|
28 |
+
count += 1
|
29 |
box = [round(i, 2) for i in box.tolist()]
|
30 |
+
draw.rectangle(box, outline="lime", width=3)
|
31 |
+
draw.text((box[0], box[1] - 10), f"{score:.2f}", fill="lime")
|
32 |
|
33 |
+
return img_draw, f"Total Persons Detected: {count}"
|
34 |
|
35 |
+
# Gradio Interface
|
36 |
iface = gr.Interface(
|
37 |
fn=detect_faces,
|
38 |
inputs=gr.Image(type="pil"),
|
39 |
+
outputs=[gr.Image(type="pil"), gr.Text()],
|
40 |
+
title="Person Detection with DETR",
|
41 |
+
description="Uses DETR model to detect people (class 1 - COCO dataset). Note: not specialized for face detection."
|
42 |
)
|
43 |
|
44 |
iface.launch()
|