|
import os |
|
from PIL import Image |
|
from transformers import AutoImageProcessor, AutoModelForObjectDetection |
|
import streamlit as st |
|
import torch |
|
import requests |
|
|
|
def prettier(results): |
|
for item in results: |
|
score = round(item['score'], 3) |
|
label = item['label'] |
|
location = [round(value, 2) for value in item['box'].values()] |
|
print(f'Detected {label} with confidence {score} at location {location}') |
|
|
|
|
|
def input_image_setup(uploaded_file): |
|
if uploaded_file is not None: |
|
|
|
bytes_data = uploaded_file.getvalue() |
|
image_parts=[ |
|
{ |
|
"mime_type": uploaded_file.type, |
|
"data": bytes_data |
|
} |
|
] |
|
return image_parts |
|
else: |
|
raise FileNotFoundError("No file uploaded") |
|
|
|
|
|
st.set_page_config(page_title="Image Detection") |
|
st.header("Object Detection Application") |
|
|
|
models = ["facebook/detr-resnet-50", "ciasimbaya/ObjectDetection", "hustvl/yolos-tiny"] |
|
model_name = st.selectbox("Select model", models) |
|
processor = AutoImageProcessor.from_pretrained(model_name) |
|
model = AutoModelForObjectDetection.from_pretrained(model_name) |
|
|
|
uploaded_file = st.file_uploader("choose an image...", type=["jpg","jpeg","png"]) |
|
image="" |
|
if uploaded_file is not None: |
|
image = Image.open(uploaded_file) |
|
st.image(image, caption="Uploaded Image.", use_column_width=True) |
|
submit = st.button("Detect Objects ") |
|
if submit: |
|
image_data=input_image_setup(uploaded_file) |
|
st.subheader("The response is..") |
|
|
|
inputs = processor(images=image, return_tensors="pt") |
|
outputs = model(**inputs) |
|
|
|
|
|
logits = outputs.logits |
|
bboxes = outputs.pred_boxes |
|
|
|
target_sizes = torch.tensor([image.size[::-1]]) |
|
results = image_processor.post_process_object_detection(outputs, threshold=0.9, target_sizes=target_sizes)[0] |
|
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): |
|
box = [round(i, 2) for i in box.tolist()] |
|
print( |
|
f"Detected {model.config.id2label[label.item()]} with confidence " |
|
f"{round(score.item(), 3)} at location {box}" |
|
) |
|
|