summarization and translation
Browse files
app.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
3 |
+
from langdetect import detect
|
4 |
+
|
5 |
+
def load_models():
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-50")
|
7 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/mbart-large-50")
|
8 |
+
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer)
|
9 |
+
translator = pipeline("translation", model=model, tokenizer=tokenizer)
|
10 |
+
return tokenizer, summarizer, translator
|
11 |
+
|
12 |
+
tokenizer, summarizer, translator = load_models()
|
13 |
+
|
14 |
+
import streamlit as st
|
15 |
+
LANGUAGE_CODES = {
|
16 |
+
"en": "en_XX", # English
|
17 |
+
"fr": "fr_XX", # French
|
18 |
+
"de": "de_DE", # German
|
19 |
+
"ru": "ru_RU", # Russian
|
20 |
+
"hi": "hi_IN", # Hindi
|
21 |
+
"mr": "mr_IN", # Marathi
|
22 |
+
"ja": "ja_XX", # Japanese
|
23 |
+
|
24 |
+
}
|
25 |
+
|
26 |
+
def detect_language(text):
|
27 |
+
lang_code = detect(text)
|
28 |
+
return lang_code
|
29 |
+
|
30 |
+
|
31 |
+
def summarize_text(text, lang_code):
|
32 |
+
mbart_lang_code = LANGUAGE_CODES.get(lang_code, "en_XX") # Default to English if unsupported
|
33 |
+
inputs = tokenizer(
|
34 |
+
f"<{mbart_lang_code}>{text}",
|
35 |
+
return_tensors="pt",
|
36 |
+
max_length=1024,
|
37 |
+
truncation=True
|
38 |
+
)
|
39 |
+
summary_ids = summarizer.model.generate(
|
40 |
+
inputs["input_ids"],
|
41 |
+
max_length=100,
|
42 |
+
min_length=30,
|
43 |
+
length_penalty=2.0,
|
44 |
+
num_beams=4
|
45 |
+
)
|
46 |
+
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
47 |
+
return summary
|
48 |
+
|
49 |
+
|
50 |
+
def translate_to_english(text, lang_code):
|
51 |
+
mbart_lang_code = LANGUAGE_CODES.get(lang_code, "en_XX") # Default to English if unsupported
|
52 |
+
inputs = tokenizer(
|
53 |
+
f"<{mbart_lang_code}>{text}",
|
54 |
+
return_tensors="pt",
|
55 |
+
max_length=1024,
|
56 |
+
truncation=True
|
57 |
+
)
|
58 |
+
translated_ids = translator.model.generate(
|
59 |
+
inputs["input_ids"],
|
60 |
+
max_length=100,
|
61 |
+
length_penalty=2.0,
|
62 |
+
num_beams=4
|
63 |
+
)
|
64 |
+
translated_text = tokenizer.decode(translated_ids[0], skip_special_tokens=True)
|
65 |
+
return translated_text
|
66 |
+
|
67 |
+
|
68 |
+
st.title("Multilingual Summarization and Translation App")
|
69 |
+
st.markdown("""This app detects the language of the input text, summarizes it in the same language, and translates it into English.""")
|
70 |
+
|
71 |
+
|
72 |
+
user_input = st.text_area("Enter text in any language:", "")
|
73 |
+
|
74 |
+
if st.button("Process Text"):
|
75 |
+
if user_input.strip():
|
76 |
+
|
77 |
+
lang_code = detect_language(user_input)
|
78 |
+
st.write(f"**Detected Language Code:** {lang_code}")
|
79 |
+
|
80 |
+
if lang_code not in LANGUAGE_CODES:
|
81 |
+
st.warning(f"The detected language ({lang_code}) is not supported by the model.")
|
82 |
+
else:
|
83 |
+
try:
|
84 |
+
|
85 |
+
summary = summarize_text(user_input, lang_code)
|
86 |
+
st.write(f"### Summarized Text ({lang_code}):")
|
87 |
+
st.write(summary)
|
88 |
+
|
89 |
+
|
90 |
+
translation = translate_to_english(summary, lang_code)
|
91 |
+
st.write("### Translated Text (English):")
|
92 |
+
st.write(translation)
|
93 |
+
|
94 |
+
except Exception as e:
|
95 |
+
st.error(f"An error occurred during processing: {e}")
|
96 |
+
else:
|
97 |
+
st.warning("Please enter some text to process.")
|