prakrutpatel commited on
Commit
30cd121
·
1 Parent(s): 51c5500

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -0
app.py CHANGED
@@ -36,6 +36,41 @@ utils_ops.tf = tf.compat.v1
36
 
37
  # Patch the location of gfile
38
  tf.gfile = tf.io.gfile
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
  def segment(image):
40
  pass # Implement your image segmentation model here...
41
 
 
36
 
37
  # Patch the location of gfile
38
  tf.gfile = tf.io.gfile
39
+ os.system('python object_detection/builders/model_builder_tf2_test.py')
40
+ def load_model(model_dir):
41
+ model = tf.saved_model.load(str(model_dir))
42
+ model = model.signatures['serving_default']
43
+ return model
44
+ os.system('mkdir "Tortoise"')
45
+ os.chdir('Tortoise/')
46
+ os.system('curl -L "https://app.roboflow.com/ds/jCjxJgk04M?key=3JE38XqESy" > roboflow.zip; unzip roboflow.zip; rm roboflow.zip')
47
+ os.chdir('..')
48
+ os.system('mkdir "COCO"')
49
+ os.chdir('COCO/')
50
+ os.system('curl -L "https://app.roboflow.com/ds/Yb2OGQm2xb?key=pbWEWpS5ec" > roboflow.zip; unzip roboflow.zip; rm roboflow.zip')
51
+ os.chdir('..')
52
+
53
+ PATH_TO_TEST_IMAGES_DIR = pathlib.Path("COCO" + '/test/')
54
+ TEST_IMAGE_PATHS = sorted(list(PATH_TO_TEST_IMAGES_DIR.glob("*.jpg")))
55
+ dataset = 'Tortoise'
56
+ test_record_fname = dataset + '/test/tortoise.tfrecord'
57
+ train_record_fname = dataset + '/train/tortoise.tfrecord'
58
+ label_map_pbtxt_fname = dataset + '/train/tortoise_label_map.pbtxt'
59
+ PATH_TO_LABELS = dataset + '/train/tortoise_label_map.pbtxt'
60
+ category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=False)
61
+
62
+
63
+ test_data_json = 'COCO/test/_annotations.coco.json'
64
+ with open(test_data_json, 'r') as f:
65
+ test_metadata = json.load(f)
66
+ for im in test_metadata['images']:
67
+ im['date_captured'] = str(datetime.strptime(im['file_name'][6:21],"%Y%m%d-%H%M%S"))
68
+
69
+ image_id_to_datetime = {im['id']:im['date_captured'] for im in test_metadata['images']}
70
+ image_path_to_id = {im['file_name']: im['id']
71
+ for im in test_metadata['images']}
72
+ faster_rcnn_model = load_model('../../Faster_RCNN_SS1_imagetensor/saved_model')
73
+
74
  def segment(image):
75
  pass # Implement your image segmentation model here...
76