Spaces:
Sleeping
Sleeping
File size: 7,477 Bytes
c46f62c 948c6d1 c46f62c 948c6d1 c46f62c 948c6d1 c46f62c 948c6d1 c46f62c 948c6d1 0b64652 c46f62c cd88a48 6e1c9c8 2427008 6e1c9c8 c1bd4a1 6e1c9c8 c1bd4a1 6e1c9c8 c1bd4a1 6e1c9c8 c1bd4a1 6e1c9c8 2427008 6e1c9c8 2427008 6e1c9c8 9dd6815 6e1c9c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
# import os
# import streamlit as st
# import fitz # PyMuPDF
# import logging
# from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
# from langchain.text_splitter import RecursiveCharacterTextSplitter
# from langchain_community.vectorstores import Chroma
# from langchain_community.embeddings import SentenceTransformerEmbeddings
# from langchain_community.llms import HuggingFacePipeline
# from langchain.chains import RetrievalQA
# from langchain.prompts import PromptTemplate
# from langchain_community.document_loaders import TextLoader
# # --- Configuration ---
# st.set_page_config(page_title="π RAG PDF Chatbot", layout="wide")
# st.title("π RAG-based PDF Chatbot")
# device = "cpu"
# # --- Logging ---
# logging.basicConfig(level=logging.INFO)
# # --- Load LLM ---
# @st.cache_resource
# def load_model():
# checkpoint = "MBZUAI/LaMini-T5-738M"
# tokenizer = AutoTokenizer.from_pretrained(checkpoint)
# model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
# pipe = pipeline('text2text-generation', model=model, tokenizer=tokenizer, max_length=1024, do_sample=True, temperature=0.3, top_k=50, top_p=0.95)
# return HuggingFacePipeline(pipeline=pipe)
# # --- Extract PDF Text ---
# def read_pdf(file):
# try:
# doc = fitz.open(stream=file.read(), filetype="pdf")
# text = ""
# for page in doc:
# text += page.get_text()
# return text.strip()
# except Exception as e:
# logging.error(f"Failed to extract text: {e}")
# return ""
# # --- Process Answer ---dd
# def process_answer(question, full_text):
# # Save the full_text to a temporary file
# with open("temp_text.txt", "w") as f:
# f.write(full_text)
# loader = TextLoader("temp_text.txt")
# docs = loader.load()
# # Chunk the documents with increased size and overlap
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=800, chunk_overlap=300)
# splits = text_splitter.split_documents(docs)
# # Load embeddings
# embeddings = SentenceTransformerEmbeddings(model_name="BAAI/bge-base-en-v1.5")
# # Create Chroma in-memory vector store
# db = Chroma.from_documents(splits, embedding=embeddings)
# retriever = db.as_retriever()
# # Set up the model
# llm = load_model()
# # Create a custom prompt
# prompt_template = PromptTemplate(
# input_variables=["context", "question"],
# template="""
# You are a helpful assistant. Carefully analyze the given context and extract direct answers ONLY from it.
# Context:
# {context}
# Question:
# {question}
# Important Instructions:
# - If the question asks for a URL (e.g., LinkedIn link), provide the exact URL as it appears.
# - Do NOT summarize or paraphrase.
# - If the information is not in the context, say "Not found in the document."
# Answer:
# """)
# # Retrieval QA with custom prompt
# qa_chain = RetrievalQA.from_chain_type(
# llm=llm,
# retriever=retriever,
# chain_type="stuff",
# chain_type_kwargs={"prompt": prompt_template}
# )
# # Return the answer using the retrieval QA chain
# return qa_chain.run(question)
# # --- UI Layout ---
# with st.sidebar:
# st.header("π Upload PDF")
# uploaded_file = st.file_uploader("Choose a PDF", type=["pdf"])
# # --- Main Interface ---
# if uploaded_file:
# st.success(f"You uploaded: {uploaded_file.name}")
# full_text = read_pdf(uploaded_file)
# if full_text:
# st.subheader("π PDF Preview")
# with st.expander("View Extracted Text"):
# st.write(full_text[:3000] + ("..." if len(full_text) > 3000 else ""))
# st.subheader("π¬ Ask a Question")
# user_question = st.text_input("Type your question about the PDF content")
# if user_question:
# with st.spinner("Thinking..."):
# answer = process_answer(user_question, full_text)
# st.markdown("### π€ Answer")
# st.write(answer)
# with st.sidebar:
# st.markdown("---")
# st.markdown("**π‘ Suggestions:**")
# st.caption("Try: \"Summarize this document\" or \"What is the key idea?\"")
# with st.expander("π‘ Suggestions", expanded=True):
# st.markdown("""
# - "Summarize this document"
# - "Give a quick summary"
# - "What are the main points?"
# - "Explain this document in short"
# """)
# else:
# st.error("β οΈ No text could be extracted from the PDF. Try another file.")
# else:
# st.info("Upload a PDF to begin.")
import streamlit as st
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from langchain.llms import HuggingFaceHub
import os
# Set Hugging Face API Token
os.environ["HUGGINGFACEHUB_API_TOKEN"] = "your_huggingfacehub_api_token_here"
# Custom Prompt
custom_prompt = PromptTemplate(
input_variables=["context", "question"],
template="""
You are a helpful assistant. Use the context below to answer the question.
If the answer is not in the context, say "I don't know."
Context:
{context}
Question:
{question}
Answer:
"""
)
# Load PDF and split into chunks
from langchain_community.document_loaders import PyPDFLoader
import tempfile
def load_and_split_pdf(uploaded_file):
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file:
tmp_file.write(uploaded_file.read())
tmp_file_path = tmp_file.name
loader = PyPDFLoader(tmp_file_path)
documents = loader.load()
# Then your text splitting logic follows
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
chunks = text_splitter.split_documents(documents)
return chunks
# Build vectorstore from document chunks
def build_vectorstore(chunks):
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
db = FAISS.from_documents(chunks, embedding=embeddings)
return db
# Build QA chain
def build_qa_chain(vectorstore):
llm = HuggingFaceHub(repo_id="mistralai/Mistral-7B-Instruct-v0.1", model_kwargs={"temperature": 0.2, "max_length": 512})
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
retriever=vectorstore.as_retriever(),
chain_type="stuff",
chain_type_kwargs={"prompt": custom_prompt}
)
return qa_chain
# Streamlit App
st.set_page_config(page_title="Accurate PDF Chatbot", layout="centered")
st.title("PDF QA Chatbot - RAG Powered")
uploaded_file = st.file_uploader("Upload a PDF", type="pdf")
if uploaded_file:
with st.spinner("Reading and processing PDF..."):
chunks = load_and_split_pdf(uploaded_file)
vectorstore = build_vectorstore(chunks)
qa_chain = build_qa_chain(vectorstore)
st.success("PDF processed. Ask your question below.")
question = st.text_input("Ask a question from the PDF:")
if question:
with st.spinner("Searching answer..."):
answer = qa_chain.run(question)
st.markdown(f"**Answer:** {answer}") |