File size: 7,477 Bytes
c46f62c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
948c6d1
c46f62c
 
948c6d1
c46f62c
 
948c6d1
c46f62c
 
 
 
948c6d1
c46f62c
 
948c6d1
0b64652
c46f62c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd88a48
 
 
6e1c9c8
 
 
 
 
 
 
 
 
 
 
2427008
 
6e1c9c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1bd4a1
 
 
 
6e1c9c8
c1bd4a1
 
 
 
 
6e1c9c8
c1bd4a1
 
 
6e1c9c8
 
c1bd4a1
6e1c9c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2427008
 
 
6e1c9c8
 
 
 
 
 
2427008
6e1c9c8
9dd6815
6e1c9c8
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# import os
# import streamlit as st
# import fitz  # PyMuPDF
# import logging
# from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
# from langchain.text_splitter import RecursiveCharacterTextSplitter
# from langchain_community.vectorstores import Chroma
# from langchain_community.embeddings import SentenceTransformerEmbeddings
# from langchain_community.llms import HuggingFacePipeline
# from langchain.chains import RetrievalQA
# from langchain.prompts import PromptTemplate
# from langchain_community.document_loaders import TextLoader

# # --- Configuration ---
# st.set_page_config(page_title="πŸ“š RAG PDF Chatbot", layout="wide")
# st.title("πŸ“š RAG-based PDF Chatbot")
# device = "cpu"

# # --- Logging ---
# logging.basicConfig(level=logging.INFO)

# # --- Load LLM ---
# @st.cache_resource
# def load_model():
#     checkpoint = "MBZUAI/LaMini-T5-738M"
#     tokenizer = AutoTokenizer.from_pretrained(checkpoint)
#     model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
#     pipe = pipeline('text2text-generation', model=model, tokenizer=tokenizer, max_length=1024, do_sample=True, temperature=0.3, top_k=50, top_p=0.95)
#     return HuggingFacePipeline(pipeline=pipe)

# # --- Extract PDF Text ---
# def read_pdf(file):
#     try:
#         doc = fitz.open(stream=file.read(), filetype="pdf")
#         text = ""
#         for page in doc:
#             text += page.get_text()
#         return text.strip()
#     except Exception as e:
#         logging.error(f"Failed to extract text: {e}")
#         return ""

# # --- Process Answer ---dd
# def process_answer(question, full_text):
#     # Save the full_text to a temporary file
#     with open("temp_text.txt", "w") as f:
#         f.write(full_text)

#     loader = TextLoader("temp_text.txt")
#     docs = loader.load()

#     # Chunk the documents with increased size and overlap
#     text_splitter = RecursiveCharacterTextSplitter(chunk_size=800, chunk_overlap=300)
#     splits = text_splitter.split_documents(docs)

#     # Load embeddings
#     embeddings = SentenceTransformerEmbeddings(model_name="BAAI/bge-base-en-v1.5")

#     # Create Chroma in-memory vector store
#     db = Chroma.from_documents(splits, embedding=embeddings)
#     retriever = db.as_retriever()

#     # Set up the model
#     llm = load_model()

#     # Create a custom prompt
#     prompt_template = PromptTemplate(
#     input_variables=["context", "question"],
#     template="""
#     You are a helpful assistant. Carefully analyze the given context and extract direct answers ONLY from it.
     
#     Context:
#     {context}
     
#     Question:
#     {question}
     
#     Important Instructions:
#     - If the question asks for a URL (e.g., LinkedIn link), provide the exact URL as it appears.
#     - Do NOT summarize or paraphrase.
#     - If the information is not in the context, say "Not found in the document."
     
#     Answer:
#     """)
     

#     # Retrieval QA with custom prompt
#     qa_chain = RetrievalQA.from_chain_type(
#         llm=llm,
#         retriever=retriever,
#         chain_type="stuff",
#         chain_type_kwargs={"prompt": prompt_template}
#     )

#     # Return the answer using the retrieval QA chain
#     return qa_chain.run(question)

# # --- UI Layout ---
# with st.sidebar:
#     st.header("πŸ“„ Upload PDF")
#     uploaded_file = st.file_uploader("Choose a PDF", type=["pdf"])

# # --- Main Interface ---
# if uploaded_file:
#     st.success(f"You uploaded: {uploaded_file.name}")
#     full_text = read_pdf(uploaded_file)

#     if full_text:
#         st.subheader("πŸ“ PDF Preview")
#         with st.expander("View Extracted Text"):
#             st.write(full_text[:3000] + ("..." if len(full_text) > 3000 else ""))

#         st.subheader("πŸ’¬ Ask a Question")
#         user_question = st.text_input("Type your question about the PDF content")

#         if user_question:
#             with st.spinner("Thinking..."):
#                 answer = process_answer(user_question, full_text)
#                 st.markdown("### πŸ€– Answer")
#                 st.write(answer)

#         with st.sidebar:
#             st.markdown("---")
#             st.markdown("**πŸ’‘ Suggestions:**")
#             st.caption("Try: \"Summarize this document\" or \"What is the key idea?\"") 
#         with st.expander("πŸ’‘ Suggestions", expanded=True):
#             st.markdown("""
#             - "Summarize this document"
#             - "Give a quick summary"
#             - "What are the main points?"
#             - "Explain this document in short"
#             """)

#     else:
#         st.error("⚠️ No text could be extracted from the PDF. Try another file.")
# else:
#     st.info("Upload a PDF to begin.")



import streamlit as st
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from langchain.llms import HuggingFaceHub
import os

# Set Hugging Face API Token
os.environ["HUGGINGFACEHUB_API_TOKEN"] = "your_huggingfacehub_api_token_here"

# Custom Prompt
custom_prompt = PromptTemplate(
    input_variables=["context", "question"],
    template="""
You are a helpful assistant. Use the context below to answer the question.
If the answer is not in the context, say "I don't know."

Context:
{context}

Question:
{question}

Answer:
"""
)

# Load PDF and split into chunks

from langchain_community.document_loaders import PyPDFLoader
import tempfile

def load_and_split_pdf(uploaded_file):
    with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file:
        tmp_file.write(uploaded_file.read())
        tmp_file_path = tmp_file.name

    loader = PyPDFLoader(tmp_file_path)
    documents = loader.load()

    # Then your text splitting logic follows
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
    chunks = text_splitter.split_documents(documents)
    return chunks
    
# Build vectorstore from document chunks
def build_vectorstore(chunks):
    embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
    db = FAISS.from_documents(chunks, embedding=embeddings)
    return db

# Build QA chain
def build_qa_chain(vectorstore):
    llm = HuggingFaceHub(repo_id="mistralai/Mistral-7B-Instruct-v0.1", model_kwargs={"temperature": 0.2, "max_length": 512})
    qa_chain = RetrievalQA.from_chain_type(
        llm=llm,
        retriever=vectorstore.as_retriever(),
        chain_type="stuff",
        chain_type_kwargs={"prompt": custom_prompt}
    )
    return qa_chain

# Streamlit App
st.set_page_config(page_title="Accurate PDF Chatbot", layout="centered")
st.title("PDF QA Chatbot - RAG Powered")

uploaded_file = st.file_uploader("Upload a PDF", type="pdf")

if uploaded_file:
    with st.spinner("Reading and processing PDF..."):
        chunks = load_and_split_pdf(uploaded_file)
        vectorstore = build_vectorstore(chunks)
        qa_chain = build_qa_chain(vectorstore)
        st.success("PDF processed. Ask your question below.")

    question = st.text_input("Ask a question from the PDF:")

    if question:
        with st.spinner("Searching answer..."):
            answer = qa_chain.run(question)
            st.markdown(f"**Answer:** {answer}")