Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,50 +7,100 @@ from tensorflow.keras.preprocessing.image import img_to_array
|
|
7 |
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
8 |
import pickle
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
# Load your pre-trained model and tokenizer
|
11 |
-
model =
|
|
|
12 |
with open("tokenizer.pkl", "rb") as handle:
|
13 |
tokenizer = pickle.load(handle)
|
14 |
|
15 |
-
# Load your precomputed features if required (else comment out)
|
16 |
-
# with open("features.pkl", "rb") as f:
|
17 |
-
# features = pickle.load(f)
|
18 |
-
|
19 |
# Image feature extractor model
|
20 |
feature_extractor = VGG16()
|
21 |
feature_extractor = tf.keras.Model(feature_extractor.input, feature_extractor.layers[-2].output)
|
22 |
|
23 |
# Description generation function
|
24 |
def generate_caption(image):
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
break
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
54 |
|
55 |
# Gradio Interface
|
56 |
title = "📸 Image Caption Generator"
|
@@ -68,4 +118,4 @@ iface = gr.Interface(
|
|
68 |
)
|
69 |
|
70 |
if __name__ == "__main__":
|
71 |
-
iface.launch()
|
|
|
7 |
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
8 |
import pickle
|
9 |
|
10 |
+
# Custom Lambda layer with explicit output shape
|
11 |
+
class CustomLambda(tf.keras.layers.Lambda):
|
12 |
+
def __init__(self, function, output_shape=None, **kwargs):
|
13 |
+
super().__init__(function, output_shape=output_shape, **kwargs)
|
14 |
+
|
15 |
+
def compute_output_shape(self, input_shape):
|
16 |
+
if self.output_shape is None:
|
17 |
+
# Default behavior for attention-like operations
|
18 |
+
if isinstance(input_shape, list) and len(input_shape) == 2:
|
19 |
+
return input_shape[0] # Return shape of first input
|
20 |
+
return input_shape
|
21 |
+
return super().compute_output_shape(input_shape)
|
22 |
+
|
23 |
+
# Define custom objects for model loading
|
24 |
+
custom_objects = {
|
25 |
+
'Lambda': CustomLambda,
|
26 |
+
'lambda': CustomLambda
|
27 |
+
}
|
28 |
+
|
29 |
+
# Multiple loading strategies
|
30 |
+
def load_model_safely():
|
31 |
+
strategies = [
|
32 |
+
# Strategy 1: Load with custom objects
|
33 |
+
lambda: tf.keras.models.load_model("caption_model.h5", custom_objects=custom_objects),
|
34 |
+
# Strategy 2: Load without compilation
|
35 |
+
lambda: tf.keras.models.load_model("caption_model.h5", compile=False),
|
36 |
+
# Strategy 3: Load with different custom objects
|
37 |
+
lambda: tf.keras.models.load_model("caption_model.h5",
|
38 |
+
custom_objects={'Lambda': tf.keras.layers.Lambda}),
|
39 |
+
]
|
40 |
+
|
41 |
+
for i, strategy in enumerate(strategies, 1):
|
42 |
+
try:
|
43 |
+
model = strategy()
|
44 |
+
print(f"Model loaded successfully using strategy {i}!")
|
45 |
+
return model
|
46 |
+
except Exception as e:
|
47 |
+
print(f"Strategy {i} failed: {e}")
|
48 |
+
continue
|
49 |
+
|
50 |
+
raise Exception("All loading strategies failed")
|
51 |
+
|
52 |
# Load your pre-trained model and tokenizer
|
53 |
+
model = load_model_safely()
|
54 |
+
|
55 |
with open("tokenizer.pkl", "rb") as handle:
|
56 |
tokenizer = pickle.load(handle)
|
57 |
|
|
|
|
|
|
|
|
|
58 |
# Image feature extractor model
|
59 |
feature_extractor = VGG16()
|
60 |
feature_extractor = tf.keras.Model(feature_extractor.input, feature_extractor.layers[-2].output)
|
61 |
|
62 |
# Description generation function
|
63 |
def generate_caption(image):
|
64 |
+
try:
|
65 |
+
# Preprocess the image
|
66 |
+
image = image.resize((224, 224))
|
67 |
+
image = img_to_array(image)
|
68 |
+
image = np.expand_dims(image, axis=0)
|
69 |
+
image = preprocess_input(image)
|
70 |
+
|
71 |
+
# Extract features
|
72 |
+
feature = feature_extractor.predict(image, verbose=0)
|
73 |
+
|
74 |
+
# Generate caption
|
75 |
+
input_text = 'startseq'
|
76 |
+
max_length = 34 # set this to your model's max_length
|
77 |
+
|
78 |
+
for _ in range(max_length):
|
79 |
+
sequence = tokenizer.texts_to_sequences([input_text])[0]
|
80 |
+
sequence = pad_sequences([sequence], maxlen=max_length)
|
81 |
+
|
82 |
+
try:
|
83 |
+
yhat = model.predict([feature, sequence], verbose=0)
|
84 |
+
yhat = np.argmax(yhat)
|
85 |
+
except Exception as e:
|
86 |
+
print(f"Prediction error: {e}")
|
87 |
+
return "Error generating caption"
|
88 |
+
|
89 |
+
word = ''
|
90 |
+
for w, i in tokenizer.word_index.items():
|
91 |
+
if i == yhat:
|
92 |
+
word = w
|
93 |
+
break
|
94 |
+
|
95 |
+
if word == 'endseq' or word == '':
|
96 |
break
|
97 |
+
input_text += ' ' + word
|
98 |
+
|
99 |
+
caption = input_text.replace('startseq', '').strip()
|
100 |
+
return caption
|
101 |
+
|
102 |
+
except Exception as e:
|
103 |
+
return f"Error processing image: {str(e)}"
|
104 |
|
105 |
# Gradio Interface
|
106 |
title = "📸 Image Caption Generator"
|
|
|
118 |
)
|
119 |
|
120 |
if __name__ == "__main__":
|
121 |
+
iface.launch()
|