set default benchmark file
Browse files
app.py
CHANGED
@@ -6,191 +6,201 @@ import re
|
|
6 |
import os
|
7 |
import glob
|
8 |
|
|
|
9 |
# Download the main results file
|
10 |
def download_main_results():
|
11 |
url = "https://github.com/huggingface/pytorch-image-models/raw/main/results/results-imagenet.csv"
|
12 |
-
if not os.path.exists(
|
13 |
response = requests.get(url)
|
14 |
-
with open(
|
15 |
f.write(response.content)
|
16 |
|
|
|
17 |
def download_github_csvs_api(
|
18 |
repo="huggingface/pytorch-image-models",
|
19 |
folder="results",
|
20 |
filename_pattern=r"benchmark-.*\.csv",
|
21 |
-
output_dir="benchmarks"
|
22 |
):
|
23 |
"""Download benchmark CSV files from GitHub API."""
|
24 |
api_url = f"https://api.github.com/repos/{repo}/contents/{folder}"
|
25 |
r = requests.get(api_url)
|
26 |
if r.status_code != 200:
|
27 |
return []
|
28 |
-
|
29 |
files = r.json()
|
30 |
-
matched_files = [f[
|
31 |
-
|
32 |
if not matched_files:
|
33 |
return []
|
34 |
-
|
35 |
raw_base = f"https://raw.githubusercontent.com/{repo}/main/{folder}/"
|
36 |
os.makedirs(output_dir, exist_ok=True)
|
37 |
-
|
38 |
for fname in matched_files:
|
39 |
raw_url = raw_base + fname
|
40 |
out_path = os.path.join(output_dir, fname)
|
41 |
-
|
42 |
if not os.path.exists(out_path): # Only download if not exists
|
43 |
resp = requests.get(raw_url)
|
44 |
if resp.ok:
|
45 |
with open(out_path, "wb") as f:
|
46 |
f.write(resp.content)
|
47 |
-
|
48 |
return matched_files
|
49 |
|
|
|
50 |
def load_main_data():
|
51 |
"""Load the main ImageNet results."""
|
52 |
download_main_results()
|
53 |
-
df_results = pd.read_csv(
|
54 |
-
df_results[
|
55 |
-
df_results[
|
56 |
return df_results
|
57 |
|
|
|
58 |
def get_data(benchmark_file, df_results):
|
59 |
"""Process benchmark data and merge with main results."""
|
60 |
pattern = (
|
61 |
-
r
|
62 |
-
r
|
63 |
-
r
|
64 |
-
r
|
65 |
-
r
|
66 |
-
r
|
67 |
-
r
|
68 |
-
r
|
69 |
-
r
|
70 |
-
r
|
71 |
-
r
|
72 |
-
r
|
73 |
)
|
74 |
-
|
75 |
if not os.path.exists(benchmark_file):
|
76 |
return pd.DataFrame()
|
77 |
-
|
78 |
-
df = pd.read_csv(benchmark_file).merge(df_results, on=
|
79 |
-
df[
|
80 |
-
df[
|
81 |
-
df = df[~df.model.str.endswith(
|
82 |
-
df.loc[df.model.str.contains(
|
|
|
|
|
83 |
return df[df.family.str.contains(pattern)]
|
84 |
|
|
|
85 |
def create_plot(benchmark_file, x_axis, y_axis, selected_families, log_x, log_y):
|
86 |
"""Create the scatter plot based on user selections."""
|
87 |
df_results = load_main_data()
|
88 |
df = get_data(benchmark_file, df_results)
|
89 |
-
|
90 |
if df.empty:
|
91 |
return None
|
92 |
-
|
93 |
# Filter by selected families
|
94 |
if selected_families:
|
95 |
-
df = df[df[
|
96 |
-
|
97 |
if df.empty:
|
98 |
return None
|
99 |
-
|
100 |
# Create the plot
|
101 |
fig = px.scatter(
|
102 |
-
df,
|
103 |
-
width=1000,
|
104 |
height=800,
|
105 |
-
x=x_axis,
|
106 |
-
y=y_axis,
|
107 |
-
log_x=log_x,
|
108 |
log_y=log_y,
|
109 |
-
color=
|
110 |
-
hover_name=
|
111 |
-
hover_data=[
|
112 |
-
title=f
|
113 |
)
|
114 |
-
|
115 |
return fig
|
116 |
|
|
|
117 |
def setup_interface():
|
118 |
"""Set up the Gradio interface."""
|
119 |
# Download benchmark files
|
120 |
downloaded_files = download_github_csvs_api()
|
121 |
-
|
122 |
# Get available benchmark files
|
123 |
benchmark_files = glob.glob("benchmarks/benchmark-*.csv")
|
124 |
if not benchmark_files:
|
125 |
benchmark_files = ["No benchmark files found"]
|
126 |
-
|
127 |
# Load sample data to get families and columns
|
128 |
df_results = load_main_data()
|
129 |
-
|
130 |
# Relevant columns for plotting
|
131 |
plot_columns = [
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
|
|
134 |
]
|
135 |
-
|
136 |
# Get families from a sample file (if available)
|
137 |
families = []
|
138 |
if benchmark_files and benchmark_files[0] != "No benchmark files found":
|
139 |
sample_df = get_data(benchmark_files[0], df_results)
|
140 |
if not sample_df.empty:
|
141 |
-
families = sorted(sample_df[
|
142 |
-
|
143 |
return benchmark_files, plot_columns, families
|
144 |
|
|
|
145 |
# Initialize the interface
|
146 |
benchmark_files, plot_columns, families = setup_interface()
|
147 |
|
148 |
# Create the Gradio interface
|
149 |
with gr.Blocks(title="Image Model Performance Analysis") as demo:
|
150 |
gr.Markdown("# Image Model Performance Analysis")
|
151 |
-
gr.Markdown(
|
152 |
-
|
|
|
|
|
153 |
with gr.Row():
|
154 |
with gr.Column(scale=1):
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
)
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
label="X-axis"
|
165 |
)
|
166 |
-
|
167 |
-
|
168 |
-
choices=
|
169 |
-
value=
|
170 |
-
label="
|
171 |
)
|
172 |
-
|
|
|
|
|
|
|
|
|
173 |
family_checkboxes = gr.CheckboxGroup(
|
174 |
-
choices=families,
|
175 |
-
value=families,
|
176 |
-
label="Select Model Families"
|
177 |
-
)
|
178 |
-
|
179 |
-
log_x_checkbox = gr.Checkbox(
|
180 |
-
value=True,
|
181 |
-
label="Log scale X-axis"
|
182 |
)
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
update_button = gr.Button("Update Plot", variant="primary")
|
190 |
-
|
191 |
with gr.Column(scale=2):
|
192 |
plot_output = gr.Plot()
|
193 |
-
|
194 |
# Update plot when button is clicked
|
195 |
update_button.click(
|
196 |
fn=create_plot,
|
@@ -200,30 +210,28 @@ with gr.Blocks(title="Image Model Performance Analysis") as demo:
|
|
200 |
y_axis_radio,
|
201 |
family_checkboxes,
|
202 |
log_x_checkbox,
|
203 |
-
log_y_checkbox
|
204 |
],
|
205 |
-
outputs=plot_output
|
206 |
)
|
207 |
-
|
208 |
# Auto-update when benchmark file changes
|
209 |
def update_families(benchmark_file):
|
210 |
if not benchmark_file or benchmark_file == "No benchmark files found":
|
211 |
return gr.CheckboxGroup(choices=[], value=[])
|
212 |
-
|
213 |
df_results = load_main_data()
|
214 |
df = get_data(benchmark_file, df_results)
|
215 |
if df.empty:
|
216 |
return gr.CheckboxGroup(choices=[], value=[])
|
217 |
-
|
218 |
-
new_families = sorted(df[
|
219 |
return gr.CheckboxGroup(choices=new_families, value=new_families)
|
220 |
-
|
221 |
benchmark_dropdown.change(
|
222 |
-
fn=update_families,
|
223 |
-
inputs=benchmark_dropdown,
|
224 |
-
outputs=family_checkboxes
|
225 |
)
|
226 |
-
|
227 |
# Load initial plot
|
228 |
demo.load(
|
229 |
fn=create_plot,
|
@@ -233,11 +241,10 @@ with gr.Blocks(title="Image Model Performance Analysis") as demo:
|
|
233 |
y_axis_radio,
|
234 |
family_checkboxes,
|
235 |
log_x_checkbox,
|
236 |
-
log_y_checkbox
|
237 |
],
|
238 |
-
outputs=plot_output
|
239 |
)
|
240 |
|
241 |
if __name__ == "__main__":
|
242 |
demo.launch()
|
243 |
-
|
|
|
6 |
import os
|
7 |
import glob
|
8 |
|
9 |
+
|
10 |
# Download the main results file
|
11 |
def download_main_results():
|
12 |
url = "https://github.com/huggingface/pytorch-image-models/raw/main/results/results-imagenet.csv"
|
13 |
+
if not os.path.exists("results-imagenet.csv"):
|
14 |
response = requests.get(url)
|
15 |
+
with open("results-imagenet.csv", "wb") as f:
|
16 |
f.write(response.content)
|
17 |
|
18 |
+
|
19 |
def download_github_csvs_api(
|
20 |
repo="huggingface/pytorch-image-models",
|
21 |
folder="results",
|
22 |
filename_pattern=r"benchmark-.*\.csv",
|
23 |
+
output_dir="benchmarks",
|
24 |
):
|
25 |
"""Download benchmark CSV files from GitHub API."""
|
26 |
api_url = f"https://api.github.com/repos/{repo}/contents/{folder}"
|
27 |
r = requests.get(api_url)
|
28 |
if r.status_code != 200:
|
29 |
return []
|
30 |
+
|
31 |
files = r.json()
|
32 |
+
matched_files = [f["name"] for f in files if re.match(filename_pattern, f["name"])]
|
33 |
+
|
34 |
if not matched_files:
|
35 |
return []
|
36 |
+
|
37 |
raw_base = f"https://raw.githubusercontent.com/{repo}/main/{folder}/"
|
38 |
os.makedirs(output_dir, exist_ok=True)
|
39 |
+
|
40 |
for fname in matched_files:
|
41 |
raw_url = raw_base + fname
|
42 |
out_path = os.path.join(output_dir, fname)
|
43 |
+
|
44 |
if not os.path.exists(out_path): # Only download if not exists
|
45 |
resp = requests.get(raw_url)
|
46 |
if resp.ok:
|
47 |
with open(out_path, "wb") as f:
|
48 |
f.write(resp.content)
|
49 |
+
|
50 |
return matched_files
|
51 |
|
52 |
+
|
53 |
def load_main_data():
|
54 |
"""Load the main ImageNet results."""
|
55 |
download_main_results()
|
56 |
+
df_results = pd.read_csv("results-imagenet.csv")
|
57 |
+
df_results["model_org"] = df_results["model"]
|
58 |
+
df_results["model"] = df_results["model"].str.split(".").str[0]
|
59 |
return df_results
|
60 |
|
61 |
+
|
62 |
def get_data(benchmark_file, df_results):
|
63 |
"""Process benchmark data and merge with main results."""
|
64 |
pattern = (
|
65 |
+
r"^(?:"
|
66 |
+
r"eva|"
|
67 |
+
r"maxx?vit(?:v2)?|"
|
68 |
+
r"coatnet|coatnext|"
|
69 |
+
r"convnext(?:v2)?|"
|
70 |
+
r"beit(?:v2)?|"
|
71 |
+
r"efficient(?:net(?:v2)?|former(?:v2)?|vit)|"
|
72 |
+
r"regnet[xyvz]?|"
|
73 |
+
r"levit|"
|
74 |
+
r"vitd?|"
|
75 |
+
r"swin(?:v2)?"
|
76 |
+
r")$"
|
77 |
)
|
78 |
+
|
79 |
if not os.path.exists(benchmark_file):
|
80 |
return pd.DataFrame()
|
81 |
+
|
82 |
+
df = pd.read_csv(benchmark_file).merge(df_results, on="model")
|
83 |
+
df["secs"] = 1.0 / df["infer_samples_per_sec"]
|
84 |
+
df["family"] = df.model.str.extract("^([a-z]+?(?:v2)?)(?:\d|_|$)")
|
85 |
+
df = df[~df.model.str.endswith("gn")]
|
86 |
+
df.loc[df.model.str.contains("resnet.*d"), "family"] = (
|
87 |
+
df.loc[df.model.str.contains("resnet.*d"), "family"] + "d"
|
88 |
+
)
|
89 |
return df[df.family.str.contains(pattern)]
|
90 |
|
91 |
+
|
92 |
def create_plot(benchmark_file, x_axis, y_axis, selected_families, log_x, log_y):
|
93 |
"""Create the scatter plot based on user selections."""
|
94 |
df_results = load_main_data()
|
95 |
df = get_data(benchmark_file, df_results)
|
96 |
+
|
97 |
if df.empty:
|
98 |
return None
|
99 |
+
|
100 |
# Filter by selected families
|
101 |
if selected_families:
|
102 |
+
df = df[df["family"].isin(selected_families)]
|
103 |
+
|
104 |
if df.empty:
|
105 |
return None
|
106 |
+
|
107 |
# Create the plot
|
108 |
fig = px.scatter(
|
109 |
+
df,
|
110 |
+
width=1000,
|
111 |
height=800,
|
112 |
+
x=x_axis,
|
113 |
+
y=y_axis,
|
114 |
+
log_x=log_x,
|
115 |
log_y=log_y,
|
116 |
+
color="family",
|
117 |
+
hover_name="model_org",
|
118 |
+
hover_data=["infer_samples_per_sec", "infer_img_size"],
|
119 |
+
title=f"Model Performance: {y_axis} vs {x_axis}",
|
120 |
)
|
121 |
+
|
122 |
return fig
|
123 |
|
124 |
+
|
125 |
def setup_interface():
|
126 |
"""Set up the Gradio interface."""
|
127 |
# Download benchmark files
|
128 |
downloaded_files = download_github_csvs_api()
|
129 |
+
|
130 |
# Get available benchmark files
|
131 |
benchmark_files = glob.glob("benchmarks/benchmark-*.csv")
|
132 |
if not benchmark_files:
|
133 |
benchmark_files = ["No benchmark files found"]
|
134 |
+
|
135 |
# Load sample data to get families and columns
|
136 |
df_results = load_main_data()
|
137 |
+
|
138 |
# Relevant columns for plotting
|
139 |
plot_columns = [
|
140 |
+
"top1",
|
141 |
+
"top5",
|
142 |
+
"infer_samples_per_sec",
|
143 |
+
"secs",
|
144 |
+
"param_count_x",
|
145 |
+
"infer_img_size",
|
146 |
]
|
147 |
+
|
148 |
# Get families from a sample file (if available)
|
149 |
families = []
|
150 |
if benchmark_files and benchmark_files[0] != "No benchmark files found":
|
151 |
sample_df = get_data(benchmark_files[0], df_results)
|
152 |
if not sample_df.empty:
|
153 |
+
families = sorted(sample_df["family"].unique().tolist())
|
154 |
+
|
155 |
return benchmark_files, plot_columns, families
|
156 |
|
157 |
+
|
158 |
# Initialize the interface
|
159 |
benchmark_files, plot_columns, families = setup_interface()
|
160 |
|
161 |
# Create the Gradio interface
|
162 |
with gr.Blocks(title="Image Model Performance Analysis") as demo:
|
163 |
gr.Markdown("# Image Model Performance Analysis")
|
164 |
+
gr.Markdown(
|
165 |
+
"Analyze and visualize performance metrics of different image models based on benchmark data."
|
166 |
+
)
|
167 |
+
|
168 |
with gr.Row():
|
169 |
with gr.Column(scale=1):
|
170 |
+
|
171 |
+
# Set preferred default file
|
172 |
+
preferred_file = (
|
173 |
+
"benchmarks/benchmark-infer-amp-nhwc-pt240-cu124-rtx3090.csv"
|
174 |
)
|
175 |
+
default_file = (
|
176 |
+
preferred_file
|
177 |
+
if preferred_file in benchmark_files
|
178 |
+
else (benchmark_files[0] if benchmark_files else None)
|
|
|
179 |
)
|
180 |
+
|
181 |
+
benchmark_dropdown = gr.Dropdown(
|
182 |
+
choices=benchmark_files,
|
183 |
+
value=default_file,
|
184 |
+
label="Select Benchmark File",
|
185 |
)
|
186 |
+
|
187 |
+
x_axis_radio = gr.Radio(choices=plot_columns, value="secs", label="X-axis")
|
188 |
+
|
189 |
+
y_axis_radio = gr.Radio(choices=plot_columns, value="top1", label="Y-axis")
|
190 |
+
|
191 |
family_checkboxes = gr.CheckboxGroup(
|
192 |
+
choices=families, value=families, label="Select Model Families"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
)
|
194 |
+
|
195 |
+
log_x_checkbox = gr.Checkbox(value=True, label="Log scale X-axis")
|
196 |
+
|
197 |
+
log_y_checkbox = gr.Checkbox(value=False, label="Log scale Y-axis")
|
198 |
+
|
|
|
199 |
update_button = gr.Button("Update Plot", variant="primary")
|
200 |
+
|
201 |
with gr.Column(scale=2):
|
202 |
plot_output = gr.Plot()
|
203 |
+
|
204 |
# Update plot when button is clicked
|
205 |
update_button.click(
|
206 |
fn=create_plot,
|
|
|
210 |
y_axis_radio,
|
211 |
family_checkboxes,
|
212 |
log_x_checkbox,
|
213 |
+
log_y_checkbox,
|
214 |
],
|
215 |
+
outputs=plot_output,
|
216 |
)
|
217 |
+
|
218 |
# Auto-update when benchmark file changes
|
219 |
def update_families(benchmark_file):
|
220 |
if not benchmark_file or benchmark_file == "No benchmark files found":
|
221 |
return gr.CheckboxGroup(choices=[], value=[])
|
222 |
+
|
223 |
df_results = load_main_data()
|
224 |
df = get_data(benchmark_file, df_results)
|
225 |
if df.empty:
|
226 |
return gr.CheckboxGroup(choices=[], value=[])
|
227 |
+
|
228 |
+
new_families = sorted(df["family"].unique().tolist())
|
229 |
return gr.CheckboxGroup(choices=new_families, value=new_families)
|
230 |
+
|
231 |
benchmark_dropdown.change(
|
232 |
+
fn=update_families, inputs=benchmark_dropdown, outputs=family_checkboxes
|
|
|
|
|
233 |
)
|
234 |
+
|
235 |
# Load initial plot
|
236 |
demo.load(
|
237 |
fn=create_plot,
|
|
|
241 |
y_axis_radio,
|
242 |
family_checkboxes,
|
243 |
log_x_checkbox,
|
244 |
+
log_y_checkbox,
|
245 |
],
|
246 |
+
outputs=plot_output,
|
247 |
)
|
248 |
|
249 |
if __name__ == "__main__":
|
250 |
demo.launch()
|
|