Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,9 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
from diffusers.models import UNet2DModel
|
4 |
from huggingface_hub import hf_hub_download
|
|
|
|
|
|
|
5 |
|
6 |
path = hf_hub_download(repo_id="porestar/oadg_channels_64", filename="model.pt")
|
7 |
|
@@ -27,16 +30,22 @@ model = UNet2DModel(
|
|
27 |
|
28 |
model.load_state_dict(torch.load(path, map_location=torch.device('cpu')))
|
29 |
|
|
|
|
|
30 |
|
31 |
-
def classify_image(inp):
|
32 |
-
return {"lol": 0}
|
33 |
|
|
|
|
|
34 |
|
35 |
-
img =
|
36 |
-
|
|
|
|
|
37 |
|
38 |
-
demo = gr.Interface(
|
39 |
-
fn=classify_image, inputs=img, outputs=label, interpretation="default"
|
40 |
-
)
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import torch
|
3 |
from diffusers.models import UNet2DModel
|
4 |
from huggingface_hub import hf_hub_download
|
5 |
+
from oadg.sampling import sample, make_conditional_paths_and_realization
|
6 |
+
|
7 |
+
image_size = 64
|
8 |
|
9 |
path = hf_hub_download(repo_id="porestar/oadg_channels_64", filename="model.pt")
|
10 |
|
|
|
30 |
|
31 |
model.load_state_dict(torch.load(path, map_location=torch.device('cpu')))
|
32 |
|
33 |
+
device = 'cpu'
|
34 |
+
model = model.to(device)
|
35 |
|
|
|
|
|
36 |
|
37 |
+
def sample_image(img):
|
38 |
+
t_range_start, sigma_conditioned, realization = make_conditional_paths_and_realization(img, device=device)
|
39 |
|
40 |
+
img = sample(model, batch_size=16, image_size=image_size,
|
41 |
+
realization=realization, t_range_start=t_range_start, sigma_conditioned=sigma_conditioned, device=device)
|
42 |
+
img = img.reshape(4*image_size, 4*image_size)*255
|
43 |
+
return img
|
44 |
|
|
|
|
|
|
|
45 |
|
46 |
+
img = gr.Image(image_mode="L", source="canvas", shape=(image_size, image_size), invert_colors=True)
|
47 |
+
out = gr.Image(image_mode="L", shape=(image_size, image_size), invert_colors=True)
|
48 |
+
|
49 |
+
demo = gr.Interface(fn=sample_image, inputs=img, outputs=out)
|
50 |
+
|
51 |
+
demo.launch()
|