Spaces:
Runtime error
Runtime error
File size: 5,445 Bytes
a577b73 3e26a38 a577b73 2eea8e7 3e26a38 53bea02 4d6055a 3e26a38 a577b73 91fb569 9bc9fb6 3e26a38 9bc9fb6 3e26a38 9bc9fb6 986f7cf 9bc9fb6 3e26a38 9bc9fb6 607ad84 3e26a38 a577b73 3e26a38 806f947 3e26a38 806f947 a577b73 4274c54 607ad84 fb4f232 8150c29 4274c54 607ad84 fb4f232 4274c54 3e26a38 a577b73 607ad84 4274c54 a577b73 9bc9fb6 3e26a38 4274c54 9bc9fb6 a577b73 9bc9fb6 53bea02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
import streamlit as st
import streamlit.components.v1 as components
import matplotlib.pyplot as plt
import pyvista as pv
import torch
import requests
import numpy as np
import numpy.typing as npt
from dcgan import DCGAN3D_G
import os
pv.start_xvfb()
def download_checkpoint(url: str, path: str) -> None:
resp = requests.get(url)
with open(path, 'wb') as f:
f.write(resp.content)
def generate_image(path: str,
image_size: int = 64,
z_dim: int = 512,
n_channels: int = 1,
n_features: int = 32,
ngpu: int = 1,
latent_size: int = 3) -> npt.ArrayLike:
netG = DCGAN3D_G(image_size, z_dim, n_channels, n_features, ngpu)
netG.load_state_dict(torch.load(path, map_location=torch.device('cpu')))
z = torch.randn(1, z_dim, latent_size, latent_size, latent_size)
with torch.no_grad():
X = netG(z)
img = 1 - (X[0, 0].numpy() + 1) / 2
return img
def create_uniform_mesh_marching_cubes(img: npt.ArrayLike):
grid = pv.UniformGrid(
dims=img.shape,
spacing=(1, 1, 1),
origin=(0, 0, 0),
)
values = img.flatten()
grid.point_data['my_array'] = values
slices = grid.slice_orthogonal()
mesh = grid.contour(1, values, method='marching_cubes', rng=[1, 0], preference="points")
dist = np.linalg.norm(mesh.points, axis=1)
return slices, mesh, dist
def create_matplotlib_figure(img: npt.ArrayLike, midpoint: int):
fig, ax = plt.subplots(1, 3, figsize=(18, 6))
ax[0].imshow(img[midpoint], cmap="gray", vmin=0, vmax=1)
ax[1].imshow(img[:, midpoint], cmap="gray", vmin=0, vmax=1)
ax[2].imshow(img[..., midpoint], cmap="gray", vmin=0, vmax=1)
for a, title in zip(ax, ["Front", "Right", "Top"]):
a.set_title(title, fontsize=18)
for a in ax:
a.set_axis_off()
return fig
st.title("Generating Porous Media with GANs")
st.markdown(
"""
### Author
_[Lukas Mosser](https://scholar.google.com/citations?user=y0R9snMAAAAJ&hl=en&oi=ao) (2022)_ - :bird:[porestar](https://twitter.com/porestar)
## Description
This is a demo of the Generative Adversarial Network (GAN, [Goodfellow 2014](https://arxiv.org/abs/1406.2661)) trained for our publication [PorousMediaGAN](https://github.com/LukasMosser/PorousMediaGan)
published in Physical Review E ([Mosser et. al 2017](https://journals.aps.org/pre/abstract/10.1103/PhysRevE.96.043309))
The model is a pretrained 3D Deep Convolutional GAN ([Radford 2015](https://arxiv.org/abs/1511.06434)) that generates a volumetric image of a porous medium, here a Berea sandstone, from a set of pretrained weights.
## Intent
I hope this encourages others to create interactive demos of their research for knowledge sharing and validation.
## The Demo
Slices through the 3D volume are rendered using [PyVista](https://www.pyvista.org/) and [PyThreeJS](https://pythreejs.readthedocs.io/en/stable/)
The model itself currently runs on the :hugging_face: [Huggingface Spaces](https://huggingface.co/spaces) instance.
Future migration to the :hugging_face: [Huggingface Models](https://huggingface.co/models) repository is possible.
### Interactive Model Parameters
The GAN used here in this study is fully convolutional "_Look Ma' no MLP's_": Changing the spatial extent of the latent space vector _z_
allows one to generate larger synthetic images.
"""
, unsafe_allow_html=True)
view_width = 400
view_height = 400
model_fname = "berea_generator_epoch_24.pth"
checkpoint_url = "https://github.com/LukasMosser/PorousMediaGan/blob/master/checkpoints/berea/{0:}?raw=true".format(model_fname)
download_checkpoint(checkpoint_url, model_fname)
latent_size = st.slider("Latent Space Size z", min_value=1, max_value=5, step=1)
img = generate_image(model_fname, latent_size=latent_size)
slices, mesh, dist = create_uniform_mesh_marching_cubes(img)
pv.set_plot_theme("document")
pl = pv.Plotter(shape=(1, 1),
window_size=(view_width, view_height))
_ = pl.add_mesh(slices, cmap="gray")
pl.export_html('slices.html')
pl = pv.Plotter(shape=(1, 1),
window_size=(view_width, view_height))
_ = pl.add_mesh(mesh, scalars=dist)
pl.export_html('mesh.html')
st.header("2D Cross-Section of Generated Volume")
fig = create_matplotlib_figure(img, img.shape[0]//2)
st.pyplot(fig=fig)
HtmlFile = open("slices.html", 'r', encoding='utf-8')
source_code = HtmlFile.read()
st.header("3D Intersections")
components.html(source_code, width=view_width, height=view_height)
st.markdown("_Click and drag to spin, right click to shift._")
HtmlFile = open("mesh.html", 'r', encoding='utf-8')
source_code = HtmlFile.read()
st.header("3D Pore Space Mesh")
components.html(source_code, width=view_width, height=view_height)
st.markdown("_Click and drag to spin, right click to shift._")
st.markdown("""
## Citation
If you use our code for your own research, we would be grateful if you cite our publication:
```
@article{pmgan2017,
title={Reconstruction of three-dimensional porous media using generative adversarial neural networks},
author={Mosser, Lukas and Dubrule, Olivier and Blunt, Martin J.},
journal={arXiv preprint arXiv:1704.03225},
year={2017}
}```
""")
os.remove("slices.html")
os.remove("mesh.html")
|