Spaces:
Runtime error
Runtime error
File size: 28,787 Bytes
c6bd7c4 79b97e2 c6bd7c4 227a8b5 c6bd7c4 9df8406 c6bd7c4 9fc992f c6bd7c4 9fc992f c6bd7c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 |
import time
from nltk.tokenize import sent_tokenize
from googleapiclient.discovery import build
from collections import Counter
import re, math
from sentence_transformers import SentenceTransformer, util
import asyncio
import httpx
from bs4 import BeautifulSoup
import numpy as np
import concurrent
from multiprocessing import Pool
from const import url_types
from collections import defaultdictimport torch
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import nltk
import torch.nn.functional as F
import nltk
from scipy.special import softmax
import yaml
from utils import *
import joblib
from optimum.bettertransformer import BetterTransformer
import gc
from cleantext import clean
import gradio as gr
from tqdm.auto import tqdm
from transformers import pipeline
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import nltk
from nltk.tokenize import sent_tokenize
from optimum.pipelines import pipeline
with open("config.yaml", "r") as file:
params = yaml.safe_load(file)
nltk.download("punkt")
nltk.download("stopwords")
device_needed = "cuda" if torch.cuda.is_available() else "cpu"
device = "cuda" if torch.cuda.is_available() else "cpu"
print('DEVICE IS :' , device)
text_bc_model_path = params["TEXT_BC_MODEL_PATH"]
text_mc_model_path = params["TEXT_MC_MODEL_PATH"]
text_quillbot_model_path = params["TEXT_QUILLBOT_MODEL_PATH"]
quillbot_labels = params["QUILLBOT_LABELS"]
mc_label_map = params["MC_OUTPUT_LABELS"]
mc_token_size = int(params["MC_TOKEN_SIZE"])
bc_token_size = int(params["BC_TOKEN_SIZE"])
bias_checker_model_name = params['BIAS_CHECKER_MODEL_PATH']
bias_corrector_model_name = params['BIAS_CORRECTOR_MODEL_PATH']
# access_token = params['HF_TOKEN']
text_bc_tokenizer = AutoTokenizer.from_pretrained(text_bc_model_path)
text_bc_model = AutoModelForSequenceClassification.from_pretrained(text_bc_model_path).to(device)
text_mc_tokenizer = AutoTokenizer.from_pretrained(text_mc_model_path)
text_mc_model = AutoModelForSequenceClassification.from_pretrained(text_mc_model_path).to(device)
quillbot_tokenizer = AutoTokenizer.from_pretrained(text_quillbot_model_path)
quillbot_model = AutoModelForSequenceClassification.from_pretrained(text_quillbot_model_path).to(device)
# proxy models for explainability
mini_bc_model_name = "polygraf-ai/bc-model"
bc_tokenizer_mini = AutoTokenizer.from_pretrained(mini_bc_model_name)
bc_model_mini = AutoModelForSequenceClassification.from_pretrained(mini_bc_model_name).to(device_needed)
mini_humanizer_model_name = "polygraf-ai/humanizer-model"
humanizer_tokenizer_mini = AutoTokenizer.from_pretrained(mini_humanizer_model_name)
humanizer_model_mini = AutoModelForSequenceClassification.from_pretrained(mini_humanizer_model_name).to(device_needed)
bc_model_mini = BetterTransformer.transform(bc_model_mini)
humanizer_model_mini = BetterTransformer.transform(humanizer_model_mini)
text_bc_model = BetterTransformer.transform(text_bc_model)
text_mc_model = BetterTransformer.transform(text_mc_model)
quillbot_model = BetterTransformer.transform(quillbot_model)
bias_model_checker = AutoModelForSequenceClassification.from_pretrained(bias_checker_model_name)
tokenizer = AutoTokenizer.from_pretrained(bias_checker_model_name)
bias_model_checker = BetterTransformer.transform(bias_model_checker, keep_original_model=False)
bias_checker = pipeline(
"text-classification",
model=bias_checker_model_name,
tokenizer=bias_checker_model_name,
)
gc.collect()
bias_corrector = pipeline( "text2text-generation", model=bias_corrector_model_name, accelerator="ort")
# model score calibration
iso_reg = joblib.load("isotonic_regression_model.joblib")
def split_text(text: str) -> list:
sentences = sent_tokenize(text)
return [[sentence] for sentence in sentences]
def correct_text(text: str, bias_checker, bias_corrector, separator: str = " ") -> tuple:
sentence_batches = split_text(text)
corrected_text = []
corrections = []
for batch in tqdm(sentence_batches, total=len(sentence_batches), desc="correcting text.."):
raw_text = " ".join(batch)
results = bias_checker(raw_text)
if results[0]["label"] != "LABEL_1" or (results[0]["label"] == "LABEL_1" and results[0]["score"] < 0.9):
corrected_batch = bias_corrector(raw_text)
corrected_version = corrected_batch[0]["generated_text"]
corrected_text.append(corrected_version)
corrections.append((raw_text, corrected_version))
else:
corrected_text.append(raw_text)
corrected_text = separator.join(corrected_text)
return corrected_text, corrections
def update(text: str):
text = clean(text, lower=False)
corrected_text, corrections = correct_text(text, bias_checker, bias_corrector)
corrections_display = "".join([f"{corr}" for orig, corr in corrections])
if corrections_display == "":
corrections_display = text
return corrections_display
def update_main(text: str):
text = clean(text, lower=False)
corrected_text, corrections = correct_text(text, bias_checker, bias_corrector)
corrections_display = "\n\n".join([f"Original: {orig}\nCorrected: {corr}" for orig, corr in corrections])
return corrected_text, corrections_display
def split_text(text: str) -> list:
sentences = sent_tokenize(text)
return [[sentence] for sentence in sentences]
def get_token_length(tokenizer, sentence):
return len(tokenizer.tokenize(sentence))
def split_text_allow_complete_sentences_nltk(text, type_det="bc"):
sentences = sent_tokenize(text)
chunks = []
current_chunk = []
current_length = 0
if type_det == "bc":
tokenizer = text_bc_tokenizer
max_tokens = bc_token_size
elif type_det == "mc":
tokenizer = text_mc_tokenizer
max_tokens = mc_token_size
elif type_det == "quillbot":
tokenizer = quillbot_tokenizer
max_tokens = 256
def add_sentence_to_chunk(sentence):
nonlocal current_chunk, current_length
sentence_length = get_token_length(tokenizer, sentence)
if current_length + sentence_length > max_tokens:
chunks.append((current_chunk, current_length))
current_chunk = []
current_length = 0
current_chunk.append(sentence)
current_length += sentence_length
for sentence in sentences:
add_sentence_to_chunk(sentence)
if current_chunk:
chunks.append((current_chunk, current_length))
adjusted_chunks = []
while chunks:
chunk = chunks.pop(0)
if len(chunks) > 0 and chunk[1] < max_tokens / 2:
next_chunk = chunks.pop(0)
combined_length = chunk[1] + next_chunk[1]
if combined_length <= max_tokens:
adjusted_chunks.append((chunk[0] + next_chunk[0], combined_length))
else:
adjusted_chunks.append(chunk)
chunks.insert(0, next_chunk)
else:
adjusted_chunks.append(chunk)
result_chunks = [" ".join(chunk[0]) for chunk in adjusted_chunks]
return result_chunks
def predict_quillbot(text, bias_buster_selected):
if bias_buster_selected:
text = update(text)
with torch.no_grad():
quillbot_model.eval()
tokenized_text = quillbot_tokenizer(
text,
padding="max_length",
truncation=True,
max_length=256,
return_tensors="pt",
).to(device)
output = quillbot_model(**tokenized_text)
output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
q_score = {
"Humanized": output_norm[1].item(),
"Original": output_norm[0].item(),
}
return q_score
def predict_for_explainanility(text, model_type=None):
if model_type == "quillbot":
cleaning = False
max_length = 256
model = humanizer_model_mini
tokenizer = humanizer_tokenizer_mini
elif model_type == "bc":
cleaning = True
max_length = bc_token_size
model = bc_model_mini
tokenizer = bc_tokenizer_mini
else:
raise ValueError("Invalid model type")
with torch.no_grad():
if cleaning:
text = [remove_special_characters(t) for t in text]
tokenized_text = tokenizer(
text,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=max_length,
).to(device_needed)
outputs = model(**tokenized_text)
tensor_logits = outputs[0]
probas = F.softmax(tensor_logits).detach().cpu().numpy()
return probas
def predict_bc(model, tokenizer, text):
with torch.no_grad():
model.eval()
tokens = text_bc_tokenizer(
text,
padding="max_length",
truncation=True,
max_length=bc_token_size,
return_tensors="pt",
).to(device)
output = model(**tokens)
output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
return output_norm
def predict_mc(model, tokenizer, text):
with torch.no_grad():
model.eval()
tokens = text_mc_tokenizer(
text,
padding="max_length",
truncation=True,
return_tensors="pt",
max_length=mc_token_size,
).to(device)
output = model(**tokens)
output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
return output_norm
def predict_bc_scores(input):
bc_scores = []
samples_len_bc = len(
split_text_allow_complete_sentences_nltk(input, type_det="bc")
)
segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
for i in range(samples_len_bc):
cleaned_text_bc = remove_special_characters(segments_bc[i])
bc_score = predict_bc(text_bc_model, text_bc_tokenizer, cleaned_text_bc)
bc_scores.append(bc_score)
bc_scores_array = np.array(bc_scores)
average_bc_scores = np.mean(bc_scores_array, axis=0)
bc_score_list = average_bc_scores.tolist()
print(
f"Original BC scores: AI: {bc_score_list[1]}, HUMAN: {bc_score_list[0]}"
)
# isotonic regression calibration
ai_score = iso_reg.predict([bc_score_list[1]])[0]
human_score = 1 - ai_score
bc_score = {"AI": ai_score, "HUMAN": human_score}
print(f"Calibration BC scores: AI: {ai_score}, HUMAN: {human_score}")
print(f"Input Text: {cleaned_text_bc}")
return bc_score
def predict_mc_scores(input):
# BC SCORE
bc_scores = []
samples_len_bc = len(
split_text_allow_complete_sentences_nltk(input, type_det="bc")
)
segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
for i in range(samples_len_bc):
cleaned_text_bc = remove_special_characters(segments_bc[i])
bc_score = predict_bc(text_bc_model, text_bc_tokenizer, cleaned_text_bc)
bc_scores.append(bc_score)
bc_scores_array = np.array(bc_scores)
average_bc_scores = np.mean(bc_scores_array, axis=0)
bc_score_list = average_bc_scores.tolist()
print(
f"Original BC scores: AI: {bc_score_list[1]}, HUMAN: {bc_score_list[0]}"
)
# isotonic regression calibration
ai_score = iso_reg.predict([bc_score_list[1]])[0]
human_score = 1 - ai_score
bc_score = {"AI": ai_score, "HUMAN": human_score}
print(f"Calibration BC scores: AI: {ai_score}, HUMAN: {human_score}")
mc_scores = []
segments_mc = split_text_allow_complete_sentences_nltk(
input, type_det="mc"
WORD = re.compile(r"\w+")
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
months = {
"January": "01",
"February": "02",
"March": "03",
"April": "04",
"May": "05",
"June": "06",
"July": "07",
"August": "08",
"September": "09",
"October": "10",
"November": "11",
"December": "12",
}
color_map = [
"#cf2323",
"#d65129",
"#d66329",
"#d67129",
"#eb9d59",
"#c2ad36",
"#d6ae29",
"#d6b929",
"#e1ed72",
"#c2db76",
"#a2db76",
]
def text_to_vector(text):
words = WORD.findall(text)
return Counter(words)
def cosineSim(text1, text2):
vector1 = text_to_vector(text1)
vector2 = text_to_vector(text2)
# print vector1,vector2
cosine = get_cosine(vector1, vector2)
return cosine
def get_cosine(vec1, vec2):
intersection = set(vec1.keys()) & set(vec2.keys())
numerator = sum([vec1[x] * vec2[x] for x in intersection])
sum1 = sum([vec1[x] ** 2 for x in vec1.keys()])
sum2 = sum([vec2[x] ** 2 for x in vec2.keys()])
denominator = math.sqrt(sum1) * math.sqrt(sum2)
if denominator == 0:
return 0.0
else:
return float(numerator) / denominator
def split_sentence_blocks(text, size):
if size == "Paragraph":
blocks = text.strip().split("\n")
return blocks
else:
sents = sent_tokenize(text.strip())
return sents
def build_date(year=2024, month="March", day=1):
return f"{year}{months[month]}{day}"
def split_ngrams(text, n):
words = text.split()
return [tuple(words[i : i + n]) for i in range(len(words) - n + 1)]
def sentence_similarity(text1, text2):
embedding_1 = model.encode(text1, convert_to_tensor=True)
embedding_2 = model.encode(text2, convert_to_tensor=True)
o = util.pytorch_cos_sim(embedding_1, embedding_2)
return o.item()
async def get_url_data(url, client):
try:
r = await client.get(url)
if r.status_code == 200:
soup = BeautifulSoup(r.content, "html.parser")
return soup
except Exception:
return None
async def parallel_scrap(urls):
async with httpx.AsyncClient(timeout=30) as client:
tasks = []
for url in urls:
tasks.append(get_url_data(url=url, client=client))
results = await asyncio.gather(*tasks, return_exceptions=True)
return results
def merge_ngrams_into_sentence(ngrams):
if ngrams == None:
return ""
if len(ngrams) > 20:
ngrams = ngrams[:20]
merged_sentence = []
i = 0
for ngram in ngrams:
overlap = len(set(ngram) & set(merged_sentence[-len(ngram) :]))
if overlap == 0:
merged_sentence.extend(ngram)
elif overlap < len(ngram):
merged_sentence.extend(ngram[overlap:])
return " ".join(merged_sentence)
def remove_ngrams_after(ngrams, target_ngram):
try:
index = ngrams.index(target_ngram)
return ngrams[: index + 1]
except ValueError:
return None
def matching_score(sentence_content_tuple):
sentence, content, score = sentence_content_tuple
if sentence in content:
return 1, sentence
# if score > 0.9:
# return score
else:
n = 5
# ngrams = split_ngrams(sentence, n)
# if len(ngrams) == 0:
# return 0
# matched = [x for x in ngrams if " ".join(x) in content]
# return len(matched) / len(ngrams)
# list comprehension matching
# ngrams_sentence = split_ngrams(sentence, n)
# ngrams_content = [tuple(ngram) for ngram in split_ngrams(content, n)]
# if len(ngrams_sentence) == 0:
# return 0, ""
# matched_ngrams = [
# 1 for ngram in ngrams_sentence if tuple(ngram) in ngrams_content
# ]
# matched_count = sum(matched_ngrams)
# set intersection matching
ngrams_sentence = set(split_ngrams(sentence, n))
ngrams_content = set(split_ngrams(content, n))
if len(ngrams_sentence) == 0:
return 0, ""
matched_ngrams = ngrams_sentence.intersection(ngrams_content)
matched_count = len(matched_ngrams)
# matched content
matched_content_ngrams = []
found = False
last_found = None
for ngram in ngrams_sentence:
for ngram_content in ngrams_content:
if tuple(ngram) == ngram_content:
found = True
last_found = ngram_content
if found:
matched_content_ngrams.append(ngram_content)
matched_content_ngrams = remove_ngrams_after(
matched_content_ngrams, last_found
)
matched_content = merge_ngrams_into_sentence(matched_content_ngrams)
return matched_count / len(ngrams_sentence), matched_content
def process_with_multiprocessing(input_data):
with Pool(processes=1) as pool:
scores = pool.map(matching_score, input_data)
return scores
def map_sentence_url(sentences, score_array):
sentenceToMaxURL = [-1] * len(sentences)
for j in range(len(sentences)):
if j > 0:
maxScore = score_array[sentenceToMaxURL[j - 1]][j]
sentenceToMaxURL[j] = sentenceToMaxURL[j - 1]
else:
maxScore = -1
for i in range(len(score_array)):
margin = (
0.05
if (j > 0 and sentenceToMaxURL[j] == sentenceToMaxURL[j - 1])
else 0
)
if score_array[i][j] - maxScore > margin:
maxScore = score_array[i][j]
sentenceToMaxURL[j] = i
return sentenceToMaxURL
def check_url_category(url):
for category, urls in url_types.items():
for u in urls:
if u in url:
return category
return "Internet Source"
def google_search(
plag_option,
sentences,
url_count,
score_array,
url_list,
snippets,
sorted_date,
domains_to_skip,
api_key,
cse_id,
**kwargs,
):
service = build("customsearch", "v1", developerKey=api_key)
num_pages = 1
for i, sentence in enumerate(sentences):
results = (
service.cse()
.list(q=sentence, cx=cse_id, sort=sorted_date, **kwargs)
.execute()
)
if "items" in results and len(results["items"]) > 0:
for count, link in enumerate(results["items"]):
if count >= num_pages:
break
# skip user selected domains
if (domains_to_skip is not None) and any(
("." + domain) in link["link"] for domain in domains_to_skip
):
continue
# clean up snippet of '...'
snippet = link["snippet"]
ind = snippet.find("...")
if ind < 20 and ind > 9:
snippet = snippet[ind + len("... ") :]
ind = snippet.find("...")
if ind > len(snippet) - 5:
snippet = snippet[:ind]
# update cosine similarity between snippet and given text
url = link["link"]
if url not in url_list:
url_list.append(url)
score_array.append([0] * len(sentences))
snippets.append([""] * len(sentences))
url_count[url] = url_count[url] + 1 if url in url_count else 1
snippets[url_list.index(url)][i] = snippet
if plag_option == "Standard":
score_array[url_list.index(url)][i] = cosineSim(
sentence, snippet
)
else:
score_array[url_list.index(url)][i] = sentence_similarity(
sentence, snippet
)
return url_count, score_array
def plagiarism_check(
plag_option,
input,
year_from,
month_from,
day_from,
year_to,
month_to,
day_to,
domains_to_skip,
source_block_size,
):
# api_key = "AIzaSyCLyCCpOPLZWuptuPAPSg8cUIZhdEMVf6g"
# api_key = "AIzaSyA5VVwY1eEoIoflejObrxFDI0DJvtbmgW8"
# api_key = "AIzaSyCLyCCpOPLZWuptuPAPSg8cUIZhdEMVf6g"
api_key = "AIzaSyCS1WQDMl1IMjaXtwSd_2rA195-Yc4psQE"
# api_key = "AIzaSyCB61O70B8AC3l5Kk3KMoLb6DN37B7nqIk"
# api_key = "AIzaSyCg1IbevcTAXAPYeYreps6wYWDbU0Kz8tg"
# api_key = "AIzaSyA5VVwY1eEoIoflejObrxFDI0DJvtbmgW8"
cse_id = "851813e81162b4ed4"
url_scores = []
sentence_scores = []
sentences = split_sentence_blocks(input, source_block_size)
url_count = {}
score_array = []
url_list = []
snippets = []
date_from = build_date(year_from, month_from, day_from)
date_to = build_date(year_to, month_to, day_to)
sort_date = f"date:r:{date_from}:{date_to}"
# get list of URLS to check
start_time = time.perf_counter()
url_count, score_array = google_search(
plag_option,
sentences,
url_count,
score_array,
url_list,
snippets,
sort_date,
domains_to_skip,
api_key,
cse_id,
)
print("GOOGLE SEARCH PROCESSING TIME: ", time.perf_counter() - start_time)
# Scrape URLs in list
start_time = time.perf_counter()
soups = asyncio.run(parallel_scrap(url_list))
print("SCRAPING PROCESSING TIME: ", time.perf_counter() - start_time)
input_data = []
for i, soup in enumerate(soups):
if soup:
page_content = soup.text
for j, sent in enumerate(sentences):
input_data.append((sent, page_content, score_array[i][j]))
start_time = time.perf_counter()
# scores = process_with_multiprocessing(input_data)
scores = []
for i in input_data:
scores.append(matching_score(i))
print("MATCHING SCORE PROCESSING TIME: ", time.perf_counter() - start_time)
matched_sentence_array = [
["" for _ in range(len(score_array[0]))]
for _ in range(len(score_array))
]
k = 0
# Update score array for each (soup, sentence)
for i, soup in enumerate(soups):
if soup:
for j, _ in enumerate(sentences):
score_array[i][j] = scores[k][0]
matched_sentence_array[i][j] = scores[k][1]
k += 1
sentenceToMaxURL = map_sentence_url(sentences, score_array)
index = np.unique(sentenceToMaxURL)
url_source = {}
for url in index:
s = [
score_array[url][sen]
for sen in range(len(sentences))
if sentenceToMaxURL[sen] == url
]
url_source[url] = sum(s) / len(s)
index_descending = sorted(url_source, key=url_source.get, reverse=True)
urlMap = {}
for count, i in enumerate(index_descending):
urlMap[i] = count + 1
# build results
for i, sent in enumerate(sentences):
ind = sentenceToMaxURL[i]
if url_source[ind] > 0.1:
sentence_scores.append(
[
sent,
round(url_source[ind] * 100, 2),
url_list[ind],
urlMap[ind],
]
)
else:
sentence_scores.append([sent, None, url_list[ind], -1])
print("SNIPPETS: ", snippets)
snippets = [[item for item in sublist if item] for sublist in snippets]
for ind in index_descending:
if url_source[ind] > 0.1:
matched_sentence_array = [
[item for item in sublist if item]
for sublist in matched_sentence_array
]
matched_sentence = "...".join(
[sent for sent in matched_sentence_array[ind]]
)
if matched_sentence == "":
matched_sentence = "...".join([sent for sent in snippets[ind]])
url_scores.append(
[
url_list[ind],
round(url_source[ind] * 100, 2),
urlMap[ind],
matched_sentence,
]
)
return sentence_scores, url_scores
def html_highlight(
plag_option,
input,
year_from,
month_from,
day_from,
year_to,
month_to,
day_to,
domains_to_skip,
source_block_size,
):
start_time = time.perf_counter()
sentence_scores, url_scores = plagiarism_check(
plag_option,
input,
year_from,
month_from,
day_from,
year_to,
month_to,
day_to,
domains_to_skip,
source_block_size,
)
html_content = """
<link href='https://fonts.googleapis.com/css?family=Roboto' rel='stylesheet'>
<div style='font-family: {font}; border: 2px solid black; padding: 10px; color: #FFFFFF;'>
<html>
<head>
<title>Toggle Details</title>
<style>
.score-container {
display: flex;
justify-content: space-around;
align-items: left;
padding: 20px;
}
.score-item {
text-align: center;
padding: 10px;
background-color: #636362;
border-radius: 5px;
flex-grow: 1;
margin: 0 5px;
}
.details {
display: none;
padding: 10px;
}
.url-link {
font-size: 1.2em;
}
.url-link span {
margin-right: 10px;
}
.toggle-button {
color: #333;
border: none;
padding: 5px 10px;
text-align: center;
text-decoration: none;
display: inline-block;
cursor: pointer;
}
</style>
</head>
"""
prev_idx = None
combined_sentence = ""
total_score = 0
total_count = 0
category_scores = defaultdict(set)
for sentence, score, url, idx in sentence_scores:
category = check_url_category(url)
if score is None:
total_score += 0
else:
total_score += score
category_scores[category].add(score)
total_count += 1
if idx != prev_idx and prev_idx is not None:
color = color_map[prev_idx - 1]
index_part = f"<span>[{prev_idx}]</span>"
formatted_sentence = f'<p style="background-color: {color}; padding: 2px;">{combined_sentence} {index_part}</p>'
html_content += formatted_sentence
combined_sentence = ""
combined_sentence += " " + sentence
prev_idx = idx
print(category_scores)
total_average_score = round(total_score / total_count, 2)
category_averages = {
category: round((sum(scores) / len(scores)), 2)
for category, scores in category_scores.items()
}
if combined_sentence:
color = color_map[prev_idx - 1]
index_part = ""
if prev_idx != -1:
index_part = f"<span>[{prev_idx}]</span>"
formatted_sentence = f'<p style="background-color: {color}; padding: 2px;">{combined_sentence} {index_part}</p>'
html_content += formatted_sentence
html_content += "<hr>"
html_content += f"""
<div class="score-container">
<div class="score-item">
<h3>Overall Similarity</h3>
<p>{total_average_score}%</p>
</div>
"""
for category, score in category_averages.items():
html_content += f"""
<div class="score-item"><h3>{category}</h3><p>{score}%</p></div>
"""
html_content += "</div>"
for url, score, idx, sentence in url_scores:
url_category = check_url_category(url)
color = color_map[idx - 1]
formatted_url = f"""
<p style="background-color: {color}; padding: 5px; font-size: 1.2em">[{idx}] <b>{url}</b></p><p><i>{url_category}</i></p>
<p> --- <b>Matching Score: </b>{score}%</p>
<p> --- <b>Original Source Content: </b>{sentence}</p>
"""
# formatted_url = f"""
# <div class="url-link">
# <p style="background-color: {color}; padding: 5px; font-size: 1.2em">[{idx}] <b>{url}</b></p><p>{url_category}</p>
# <a href="#" onclick="toggleDetails(event)" class="toggle-button">></a>
# </div>
# <div id="detailsContainer" class="details">
# <p> --- <b>Matching Score: </b>{score}%</p>
# <p> --- <b>Original Source Content: </b>{sentence}</p>
# </div>
# """
html_content += formatted_url
html_content += "</html>"
print("PLAGIARISM PROCESSING TIME: ", time.perf_counter() - start_time)
return html_content
|