Spaces:
Running
Running
kovacsvi
commited on
Commit
Β·
0c08f54
1
Parent(s):
55f07e5
pep8
Browse files
utils.py
CHANGED
|
@@ -18,7 +18,9 @@ from interfaces.illframes import domains as domains_illframes
|
|
| 18 |
from interfaces.cap import build_huggingface_path as hf_cap_path
|
| 19 |
from interfaces.cap_minor import build_huggingface_path as hf_cap_minor_path
|
| 20 |
from interfaces.cap_minor_media import build_huggingface_path as hf_cap_minor_media_path
|
| 21 |
-
from interfaces.cap_media_demo import
|
|
|
|
|
|
|
| 22 |
from interfaces.cap_media2 import build_huggingface_path as hf_cap_media2_path
|
| 23 |
from interfaces.manifesto import build_huggingface_path as hf_manifesto_path
|
| 24 |
from interfaces.sentiment import build_huggingface_path as hf_sentiment_path
|
|
@@ -35,14 +37,21 @@ JIT_DIR = "/data/jit_models"
|
|
| 35 |
HF_TOKEN = os.environ["hf_read"]
|
| 36 |
|
| 37 |
# should be a temporary solution
|
| 38 |
-
models = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
# it gets more difficult with cap
|
| 41 |
domains_cap = list(domains_cap.values())
|
| 42 |
for language in languages_cap:
|
| 43 |
for domain in domains_cap:
|
| 44 |
models.append(hf_cap_path(language, domain))
|
| 45 |
-
|
| 46 |
# cap media
|
| 47 |
models.append(hf_cap_media_path("", ""))
|
| 48 |
|
|
@@ -51,36 +60,35 @@ models.append(hf_cap_media2_path("", ""))
|
|
| 51 |
|
| 52 |
# cap minor media
|
| 53 |
models.append(hf_cap_minor_media_path("", "", False))
|
| 54 |
-
|
| 55 |
# emotion9
|
| 56 |
for language in languages_emotion9:
|
| 57 |
models.append(hf_emotion9_path(language))
|
| 58 |
-
|
| 59 |
# illframes (domains is a dict for some reason?)
|
| 60 |
for domain in domains_illframes.values():
|
| 61 |
models.append(hf_illframes_path(domain))
|
| 62 |
|
| 63 |
tokenizers = ["xlm-roberta-large"]
|
| 64 |
|
|
|
|
| 65 |
def download_hf_models():
|
| 66 |
os.makedirs(JIT_DIR, exist_ok=True)
|
| 67 |
|
| 68 |
for model_id in models:
|
| 69 |
print(f"Downloading + JIT tracing model: {model_id}")
|
| 70 |
-
|
| 71 |
safe_model_name = model_id.replace("/", "_")
|
| 72 |
traced_model_path = os.path.join(JIT_DIR, f"{safe_model_name}.pt")
|
| 73 |
-
|
| 74 |
if os.path.exists(traced_model_path):
|
| 75 |
delete_unused_bin_files(model_id)
|
| 76 |
print(f"β© Skipping JIT β already exists: {traced_model_path}")
|
| 77 |
else:
|
| 78 |
print(f"βοΈ Tracing and saving: {traced_model_path}")
|
| 79 |
-
|
| 80 |
model = AutoModelForSequenceClassification.from_pretrained(
|
| 81 |
-
model_id,
|
| 82 |
-
token=HF_TOKEN,
|
| 83 |
-
device_map="auto"
|
| 84 |
)
|
| 85 |
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large")
|
| 86 |
|
|
@@ -92,36 +100,39 @@ def download_hf_models():
|
|
| 92 |
return_tensors="pt",
|
| 93 |
padding=True,
|
| 94 |
truncation=True,
|
| 95 |
-
max_length=64
|
| 96 |
)
|
| 97 |
|
| 98 |
# JIT trace
|
| 99 |
traced_model = torch.jit.trace(
|
| 100 |
model,
|
| 101 |
(dummy_input["input_ids"], dummy_input["attention_mask"]),
|
| 102 |
-
strict=False
|
| 103 |
)
|
| 104 |
|
| 105 |
# Save traced model
|
| 106 |
traced_model.save(traced_model_path)
|
| 107 |
print(f"βοΈ Saved JIT model to: {traced_model_path}")
|
| 108 |
-
|
|
|
|
| 109 |
def df_h():
|
| 110 |
df_result = subprocess.run(["df", "-H"], capture_output=True, text=True)
|
| 111 |
print("=== Disk Free Space (df -H) ===")
|
| 112 |
print(df_result.stdout)
|
| 113 |
|
| 114 |
-
du_result = subprocess.run(
|
|
|
|
|
|
|
| 115 |
print("=== Disk Usage for /data/ (du -h --max-depth=2) ===")
|
| 116 |
print(du_result.stdout)
|
| 117 |
-
|
| 118 |
|
| 119 |
def delete_unused_bin_files(model_id: str):
|
| 120 |
target_path = f"/data/models--poltextlab--{model_id}"
|
| 121 |
|
| 122 |
# delete files in blobs/
|
| 123 |
blob_bins = glob.glob(f"{target_path}/blobs/**/*", recursive=True)
|
| 124 |
-
|
| 125 |
# delete .bin files in snapshots/, except config.json
|
| 126 |
snapshot_bins = glob.glob(f"{target_path}/snapshots/**/*.bin", recursive=True)
|
| 127 |
|
|
@@ -136,16 +147,16 @@ def delete_unused_bin_files(model_id: str):
|
|
| 136 |
elif os.path.isdir(path):
|
| 137 |
print(f"Deleting directory: {path}")
|
| 138 |
shutil.rmtree(path)
|
| 139 |
-
|
| 140 |
-
|
| 141 |
def delete_http_folders():
|
| 142 |
http_folders = glob.glob("/data/http*")
|
| 143 |
for folder in http_folders:
|
| 144 |
if os.path.isdir(folder):
|
| 145 |
print(f"Deleting: {folder}")
|
| 146 |
shutil.rmtree(folder)
|
| 147 |
-
|
| 148 |
-
|
| 149 |
@contextmanager
|
| 150 |
def hf_cleanup():
|
| 151 |
delete_http_folders()
|
|
@@ -153,13 +164,15 @@ def hf_cleanup():
|
|
| 153 |
yield
|
| 154 |
finally:
|
| 155 |
delete_http_folders()
|
| 156 |
-
|
| 157 |
-
|
| 158 |
def scan_cache():
|
| 159 |
# Scan Hugging Face model cache
|
| 160 |
-
cache_dir = os.environ.get(
|
|
|
|
|
|
|
| 161 |
scan_result = scan_cache_dir(cache_dir)
|
| 162 |
-
|
| 163 |
print("=== π€ Hugging Face Model Cache ===")
|
| 164 |
print(f"Cache size: {scan_result.size_on_disk / 1e6:.2f} MB")
|
| 165 |
print(f"Number of repos: {len(scan_result.repos)}")
|
|
@@ -178,16 +191,17 @@ def scan_cache():
|
|
| 178 |
size = os.path.getsize(path)
|
| 179 |
total_size += size
|
| 180 |
print(f"- {filename}: {size / 1e6:.2f} MB")
|
| 181 |
-
|
| 182 |
print(f"Total JIT cache size: {total_size / 1e6:.2f} MB")
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
os.environ[
|
| 187 |
-
os.environ[
|
| 188 |
-
os.environ[
|
| 189 |
-
|
| 190 |
-
|
|
|
|
| 191 |
def set_torch_threads():
|
| 192 |
torch.set_num_threads(1)
|
| 193 |
os.environ["OMP_NUM_THREADS"] = "1"
|
|
@@ -196,8 +210,8 @@ def set_torch_threads():
|
|
| 196 |
|
| 197 |
def is_disk_full(min_free_space_in_GB=10):
|
| 198 |
total, used, free = shutil.disk_usage("/")
|
| 199 |
-
free_gb = free / (1024
|
| 200 |
-
|
| 201 |
if free_gb >= min_free_space_in_GB:
|
| 202 |
return False
|
| 203 |
else:
|
|
|
|
| 18 |
from interfaces.cap import build_huggingface_path as hf_cap_path
|
| 19 |
from interfaces.cap_minor import build_huggingface_path as hf_cap_minor_path
|
| 20 |
from interfaces.cap_minor_media import build_huggingface_path as hf_cap_minor_media_path
|
| 21 |
+
from interfaces.cap_media_demo import (
|
| 22 |
+
build_huggingface_path as hf_cap_media_path,
|
| 23 |
+
) # why... just follow the name template the next time pls
|
| 24 |
from interfaces.cap_media2 import build_huggingface_path as hf_cap_media2_path
|
| 25 |
from interfaces.manifesto import build_huggingface_path as hf_manifesto_path
|
| 26 |
from interfaces.sentiment import build_huggingface_path as hf_sentiment_path
|
|
|
|
| 37 |
HF_TOKEN = os.environ["hf_read"]
|
| 38 |
|
| 39 |
# should be a temporary solution
|
| 40 |
+
models = [
|
| 41 |
+
hf_manifesto_path(""),
|
| 42 |
+
hf_sentiment_path(""),
|
| 43 |
+
hf_emotion_path(""),
|
| 44 |
+
hf_cap_minor_path("", ""),
|
| 45 |
+
hf_cap_minor_path("", "social"),
|
| 46 |
+
hf_ontolisst_path(""),
|
| 47 |
+
]
|
| 48 |
|
| 49 |
# it gets more difficult with cap
|
| 50 |
domains_cap = list(domains_cap.values())
|
| 51 |
for language in languages_cap:
|
| 52 |
for domain in domains_cap:
|
| 53 |
models.append(hf_cap_path(language, domain))
|
| 54 |
+
|
| 55 |
# cap media
|
| 56 |
models.append(hf_cap_media_path("", ""))
|
| 57 |
|
|
|
|
| 60 |
|
| 61 |
# cap minor media
|
| 62 |
models.append(hf_cap_minor_media_path("", "", False))
|
| 63 |
+
|
| 64 |
# emotion9
|
| 65 |
for language in languages_emotion9:
|
| 66 |
models.append(hf_emotion9_path(language))
|
| 67 |
+
|
| 68 |
# illframes (domains is a dict for some reason?)
|
| 69 |
for domain in domains_illframes.values():
|
| 70 |
models.append(hf_illframes_path(domain))
|
| 71 |
|
| 72 |
tokenizers = ["xlm-roberta-large"]
|
| 73 |
|
| 74 |
+
|
| 75 |
def download_hf_models():
|
| 76 |
os.makedirs(JIT_DIR, exist_ok=True)
|
| 77 |
|
| 78 |
for model_id in models:
|
| 79 |
print(f"Downloading + JIT tracing model: {model_id}")
|
| 80 |
+
|
| 81 |
safe_model_name = model_id.replace("/", "_")
|
| 82 |
traced_model_path = os.path.join(JIT_DIR, f"{safe_model_name}.pt")
|
| 83 |
+
|
| 84 |
if os.path.exists(traced_model_path):
|
| 85 |
delete_unused_bin_files(model_id)
|
| 86 |
print(f"β© Skipping JIT β already exists: {traced_model_path}")
|
| 87 |
else:
|
| 88 |
print(f"βοΈ Tracing and saving: {traced_model_path}")
|
| 89 |
+
|
| 90 |
model = AutoModelForSequenceClassification.from_pretrained(
|
| 91 |
+
model_id, token=HF_TOKEN, device_map="auto"
|
|
|
|
|
|
|
| 92 |
)
|
| 93 |
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large")
|
| 94 |
|
|
|
|
| 100 |
return_tensors="pt",
|
| 101 |
padding=True,
|
| 102 |
truncation=True,
|
| 103 |
+
max_length=64,
|
| 104 |
)
|
| 105 |
|
| 106 |
# JIT trace
|
| 107 |
traced_model = torch.jit.trace(
|
| 108 |
model,
|
| 109 |
(dummy_input["input_ids"], dummy_input["attention_mask"]),
|
| 110 |
+
strict=False,
|
| 111 |
)
|
| 112 |
|
| 113 |
# Save traced model
|
| 114 |
traced_model.save(traced_model_path)
|
| 115 |
print(f"βοΈ Saved JIT model to: {traced_model_path}")
|
| 116 |
+
|
| 117 |
+
|
| 118 |
def df_h():
|
| 119 |
df_result = subprocess.run(["df", "-H"], capture_output=True, text=True)
|
| 120 |
print("=== Disk Free Space (df -H) ===")
|
| 121 |
print(df_result.stdout)
|
| 122 |
|
| 123 |
+
du_result = subprocess.run(
|
| 124 |
+
["du", "-h", "--max-depth=2", "/data/"], capture_output=True, text=True
|
| 125 |
+
)
|
| 126 |
print("=== Disk Usage for /data/ (du -h --max-depth=2) ===")
|
| 127 |
print(du_result.stdout)
|
| 128 |
+
|
| 129 |
|
| 130 |
def delete_unused_bin_files(model_id: str):
|
| 131 |
target_path = f"/data/models--poltextlab--{model_id}"
|
| 132 |
|
| 133 |
# delete files in blobs/
|
| 134 |
blob_bins = glob.glob(f"{target_path}/blobs/**/*", recursive=True)
|
| 135 |
+
|
| 136 |
# delete .bin files in snapshots/, except config.json
|
| 137 |
snapshot_bins = glob.glob(f"{target_path}/snapshots/**/*.bin", recursive=True)
|
| 138 |
|
|
|
|
| 147 |
elif os.path.isdir(path):
|
| 148 |
print(f"Deleting directory: {path}")
|
| 149 |
shutil.rmtree(path)
|
| 150 |
+
|
| 151 |
+
|
| 152 |
def delete_http_folders():
|
| 153 |
http_folders = glob.glob("/data/http*")
|
| 154 |
for folder in http_folders:
|
| 155 |
if os.path.isdir(folder):
|
| 156 |
print(f"Deleting: {folder}")
|
| 157 |
shutil.rmtree(folder)
|
| 158 |
+
|
| 159 |
+
|
| 160 |
@contextmanager
|
| 161 |
def hf_cleanup():
|
| 162 |
delete_http_folders()
|
|
|
|
| 164 |
yield
|
| 165 |
finally:
|
| 166 |
delete_http_folders()
|
| 167 |
+
|
| 168 |
+
|
| 169 |
def scan_cache():
|
| 170 |
# Scan Hugging Face model cache
|
| 171 |
+
cache_dir = os.environ.get(
|
| 172 |
+
"TRANSFORMERS_CACHE", os.path.expanduser("~/.cache/huggingface/transformers")
|
| 173 |
+
)
|
| 174 |
scan_result = scan_cache_dir(cache_dir)
|
| 175 |
+
|
| 176 |
print("=== π€ Hugging Face Model Cache ===")
|
| 177 |
print(f"Cache size: {scan_result.size_on_disk / 1e6:.2f} MB")
|
| 178 |
print(f"Number of repos: {len(scan_result.repos)}")
|
|
|
|
| 191 |
size = os.path.getsize(path)
|
| 192 |
total_size += size
|
| 193 |
print(f"- {filename}: {size / 1e6:.2f} MB")
|
| 194 |
+
|
| 195 |
print(f"Total JIT cache size: {total_size / 1e6:.2f} MB")
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def set_hf_cache_dir(path: str):
|
| 199 |
+
os.environ["TRANSFORMERS_CACHE"] = path
|
| 200 |
+
os.environ["HF_HOME"] = path
|
| 201 |
+
os.environ["HF_DATASETS_CACHE"] = path
|
| 202 |
+
os.environ["TORCH_HOME"] = path
|
| 203 |
+
|
| 204 |
+
|
| 205 |
def set_torch_threads():
|
| 206 |
torch.set_num_threads(1)
|
| 207 |
os.environ["OMP_NUM_THREADS"] = "1"
|
|
|
|
| 210 |
|
| 211 |
def is_disk_full(min_free_space_in_GB=10):
|
| 212 |
total, used, free = shutil.disk_usage("/")
|
| 213 |
+
free_gb = free / (1024**3)
|
| 214 |
+
|
| 215 |
if free_gb >= min_free_space_in_GB:
|
| 216 |
return False
|
| 217 |
else:
|