import os from threading import Thread from typing import Iterator import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer # from transformers import StoppingCriteria, StoppingCriteriaList, StopStringCriteria MAX_MAX_NEW_TOKENS = 1024 DEFAULT_MAX_NEW_TOKENS = 512 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) DESCRIPTION = """\ # Hymba-1.5B chat """ model_id = "nvidia/Hymba-1.5B-Instruct" model = AutoModelForCausalLM.from_pretrained(model_id, device_map="cuda", trust_remote_code=True) model = model.cuda().to(torch.bfloat16) #model.to('cuda') #model.eval() tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) tokenizer.chat_template = "{{'System'}}{% for message in messages %}{% if message['role'] == 'system' %}{{'\n' + message['content'].strip()}}{% if tools or contexts %}{{'\n'}}{% endif %}{% endif %}{% endfor %}{% if tools %}{% for tool in tools %}{{ '\n ' + tool|tojson + ' ' }}{% endfor %}{% endif %}{% if contexts %}{% if tools %}{{'\n'}}{% endif %}{% for context in contexts %}{{ '\n ' + context.strip() + ' ' }}{% endfor %}{% endif %}{{'\n\n'}}{% for message in messages %}{% if message['role'] == 'user' %}{{ 'User\n' + message['content'].strip() + '\n' }}{% elif message['role'] == 'assistant' %}{{ 'Assistant\n' + message['content'].strip() + '\n' }}{% elif message['role'] == 'tool' %}{{ 'Tool\n' + message['content'].strip() + '\n' }}{% endif %}{% endfor %}{%- if add_generation_prompt %}{{'Assistant\n'}}{%- endif %}" #tokenizer.use_default_system_prompt = False # class StoppingCriteriaSub(StoppingCriteria): # def __init__(self, tokenizer, stops = [], encounters=1): # super().__init__() # self.stops = [stop.to("cuda") for stop in stops] # self.tokenizer = tokenizer # self.num_mamba_stop_ids = 8 # def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor): # last_token = input_ids[0][-self.num_mamba_stop_ids:] # for stop in self.stops: # if self.tokenizer.decode(stop) in self.tokenizer.decode(last_token): # return True # return False @spaces.GPU def generate( message: str, chat_history: list[dict], system_prompt: str = "", max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2, ) -> Iterator[str]: conversation = [] if system_prompt: conversation.append({"role": "system", "content": system_prompt}) conversation += chat_history conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, return_tensors="pt").to('cuda') # stopping_criteria = StoppingCriteriaList([StopStringCriteria(tokenizer=tokenizer, stop_strings="")]) if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=False) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, # "stopping_criteria": stopping_criteria, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) chat_interface = gr.ChatInterface( fn=generate, additional_inputs=[ gr.Textbox(label="System prompt", lines=6, value="You are a helpful assistant. Your name is Hymba-1.5B-Instruct-8K. \ You are a new family of small language models featuring a hybrid-head architecture that strategically integrates attention mechanisms with state space models (SSMs). \ You are developed by Deep Learning Efficiency Research (DLER) team at NVIDIA Research. \ Nvidia Corporation is an American multinational corporation and technology company headquartered in Santa Clara, California. Nvidia was founded on April 5, 1993 by Jensen Huang. \ The above is just a background context. You can answer any questions not limited to the above background context."), gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), gr.Slider( label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6, ), gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9, ), gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=50, ), gr.Slider( label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2, ), ], stop_btn=None, examples=[ ["Hello there! How are you doing?"], ["Can you explain briefly to me what is the Python programming language?"], ["Explain the plot of Cinderella in a sentence."], ["How many hours does it take a man to eat a Helicopter?"], ["Write a 100-word article on 'Benefits of Open-Source in AI research'"], ], cache_examples=False, type="messages", ) with gr.Blocks(css_paths="style.css", fill_height=True) as demo: gr.Markdown(DESCRIPTION) # gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") chat_interface.render() # gr.Markdown(LICENSE) if __name__ == "__main__": demo.queue(max_size=20).launch()