import numpy as np import pandas as pd # Create an empty DataFrame with 5 columns df = pd.DataFrame(columns=['col1', 'col2', 'col3', 'col4', 'col5']) # Or any column names you want # Method 1: Using a dictionary and append (less efficient for large DataFrames) for _ in range(5): # Add 5 rows df = pd.concat([df, pd.DataFrame([{'col1': np.nan, 'col2': np.nan, 'col3': np.nan, 'col4': np.nan, 'col5': np.nan}])], ignore_index=True) d = {"col1": "ta", "col2": "gs"} df.loc[1, "col1"] = d["col1"] for index, row in enumerate(df): print(index)