news_verification / application.py
pmkhanh7890's picture
solve bugs, update combination score and label, add method for better searching.
504f37b
raw
history blame
8.64 kB
import os
import gradio as gr
import requests
from PIL import Image
from src.application.content_detection import NewsVerification
from src.application.url_reader import URLReader
from src.application.content_generation import generate_fake_image, generate_fake_text, replace_text
AZURE_TEXT_MODEL = ["gpt-4o-mini", "gpt-4o"]
AZURE_IMAGE_MODEL = ["dall-e-3", "Stable Diffusion (not supported)"]
def load_url(url):
"""
Load content from the given URL.
"""
content = URLReader(url)
image = None
header = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/100.0.4896.127 Safari/537.36'}
try:
response = requests.get(
url,
headers = header,
stream = True
)
response.raise_for_status() # Raise an exception for bad status codes
image_response = requests.get(content.top_image, stream=True)
try:
image = Image.open(image_response.raw)
except:
print(f"Error loading image from {content.top_image}")
except (requests.exceptions.RequestException, FileNotFoundError) as e:
print(f"Error fetching image: {e}")
return content.title, content.text, image
def generate_analysis_report(news_title:str, news_content: str, news_image: Image):
news_analysis = NewsVerification()
news_analysis.load_news(news_title, news_content, news_image)
news_analysis.generate_analysis_report()
return news_analysis.analyze_details()
# Define the GUI
with gr.Blocks() as demo:
gr.Markdown("# NEWS VERIFICATION")
with gr.Row():
# SETTINGS
with gr.Column(scale=1):
with gr.Accordion("1. Enter a URL"):
url_input = gr.Textbox(
label="",
show_label=False,
value="",
)
load_button = gr.Button("Load URL")
with gr.Accordion("2. Select content-generation models", open=True, visible=False):
with gr.Row():
text_generation_model = gr.Dropdown(choices=AZURE_TEXT_MODEL, label="Text-generation model")
image_generation_model = gr.Dropdown(choices=AZURE_IMAGE_MODEL, label="Image-generation model")
generate_text_button = gr.Button("Generate text")
generate_image_button = gr.Button("Generate image")
with gr.Accordion("3. Replace any terms", open=True, visible=False):
replace_df = gr.Dataframe(
headers=["Find what:", "Replace with:"],
datatype=["str", "str"],
row_count=(1, "dynamic"),
col_count=(2, "fixed"),
interactive=True
)
replace_button = gr.Button("Replace all")
# GENERATED CONTENT
with gr.Accordion("Input News"):
news_title = gr.Textbox(label="Title", value="")
news_image = gr.Image(label="Image", type="filepath")
news_content = gr.Textbox(label="Content", value="", lines=13)
# NEWS ANALYSIS REPORT
ordinary_user_explanation = """
FOR ORDINARY USER<br>
- Green texts are the matched words in the input and source news.<br>
- Each highlighted pair (marked with a number) shows the key differences between the input text and the source.
"""
fact_checker_explanation = """
FOR FACT CHECKER<br>
- Green texts are the matched words in the input and source news.<br>
- Each highlighted pair (marked with a number) shows the key differences between the input text and the source.
"""
governor_explanation = """
FOR GOVERNOR<br>
- Green texts are the matched words in the input and source news.<br>
- Each highlighted pair (marked with a number) shows the key differences between the input text and the source.
"""
table = """
<h5>Comparison between input news and source news:</h5>
<table border="1" style="width:100%; text-align:left; border-collapse:collapse;">
<col style="width: 170px;"> <col style="width: 170px;"> <col style="width: 30px;"> <col style="width: 75px;">
<thead>
<tr>
<th>Input news</th>
<th>Source (URL provided in Originality column correspondingly)</th>
<th>Forensic</th>
<th>Originality</th>
</tr>
</thead>
<tbody>
<tr>
<th>TBD</th>
<th>TBD</th>
<th>TBD</th>
<th>TBD</th>
</tr>
</tbody>
</table>
<style>"""
with gr.Column(scale=2):
with gr.Accordion("NEWS ANALYSIS"):
verification_button = gr.Button("Verify news")
with gr.Tab("Orinary User"):
gr.HTML(ordinary_user_explanation)
ordinary_user_result = gr.HTML(table)
with gr.Tab("Fact Checker"):
gr.HTML(fact_checker_explanation)
fact_checker_result = gr.HTML(table)
with gr.Tab("Governor"):
gr.HTML(governor_explanation)
governor_result = gr.HTML(table)
# Connect events
load_button.click(
load_url,
inputs=url_input,
outputs=[news_title, news_content, news_image]
)
replace_button.click(replace_text,
inputs=[news_title, news_content, replace_df],
outputs=[news_title, news_content])
generate_text_button.click(generate_fake_text,
inputs=[text_generation_model, news_title, news_content],
outputs=[news_title, news_content])
generate_image_button.click(generate_fake_image,
inputs=[image_generation_model, news_title],
outputs=[news_image])
verification_button.click(generate_analysis_report,
inputs=[news_title, news_content, news_image],
outputs=[ordinary_user_result, fact_checker_result, governor_result])
# change Image
#url_input.change(load_image, inputs=url_input, outputs=image_view)
try:
with open('examples/example_text_real.txt','r', encoding='utf-8') as file:
text_real_1 = file.read()
with open('examples/example_text_real_2.txt','r', encoding='utf-8') as file:
text_real_2 = file.read()
with open('examples/example_text_LLM_topic.txt','r', encoding='utf-8') as file:
text_llm_topic = file.read()
with open('examples/example_text_LLM_modification.txt','r', encoding='utf-8') as file:
text_llm_modification = file.read()
with open('examples/example_text_LLM_entities.txt','r', encoding='utf-8') as file:
text_llm_entities = file.read()
except FileNotFoundError:
print("File not found.")
except Exception as e:
print(f"An error occurred: {e}")
title_1 = "Southampton news: Leeds target striker Cameron Archer."
title_2 = "Southampton news: Leeds target striker Cameron Archer."
title_4 = "Japan pledges support for Ukraine with 100-year pact."
image_1 = "examples/example_image_real_1.jpg.webp"
image_2 = "examples/example_image_real_2.jpg.webp"
image_3 = "examples/example_image_real_3.jpg"
image_4 = "examples/example_image_real_4.jpg.webp"
gr.Examples(
examples=[
[title_1, image_1, text_real_1 + '\n\n' + text_real_2],
[title_1, image_2, text_real_1 + '\n\n' + text_llm_modification],
[title_1, image_3, text_real_1 + '\n\n' + text_llm_topic],
[title_4, image_4, text_llm_entities],
],
inputs=[news_title, news_image, news_content],
label="Examples",
example_labels=[
"2 real news",
"1 real news + 1 LLM modification-based news",
"1 real news + 1 LLM topic-based news",
"1 LLM changed-entities news",
],
)
demo.launch(share=True)