File size: 9,254 Bytes
0827f9d
 
 
 
 
1ce1659
00b1038
1ce1659
38fd181
0827f9d
 
 
 
 
 
 
00b1038
0827f9d
 
 
38fd181
b73a4fc
38fd181
 
 
 
 
 
 
1ce1659
 
0827f9d
 
 
 
 
 
 
 
1ce1659
0827f9d
 
 
 
7e6ffb4
0827f9d
 
 
 
 
 
 
 
504f37b
62dc9d8
504f37b
0827f9d
504f37b
0827f9d
 
38fd181
504f37b
0827f9d
 
 
504f37b
0827f9d
504f37b
38fd181
504f37b
 
38fd181
504f37b
38fd181
504f37b
 
38fd181
504f37b
38fd181
a5e8d12
 
504f37b
 
38fd181
7e6ffb4
 
a5e8d12
38fd181
 
 
504f37b
bfe6692
 
 
 
 
 
7e6ffb4
bfe6692
00b1038
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e6ffb4
 
 
62dc9d8
0827f9d
62dc9d8
 
 
 
 
 
7e6ffb4
9919b54
a5e8d12
38fd181
 
 
bfe6692
 
 
 
00b1038
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfe6692
 
 
504f37b
38fd181
0827f9d
62dc9d8
7e6ffb4
504f37b
38fd181
0827f9d
1ce1659
0827f9d
 
1ce1659
 
0827f9d
 
 
1ce1659
 
0827f9d
 
 
 
 
 
 
1ce1659
 
a5e8d12
38fd181
a5e8d12
7e6ffb4
a5e8d12
0827f9d
a5e8d12
7e6ffb4
1ce1659
0827f9d
 
1ce1659
a5e8d12
1ce1659
 
a5e8d12
38fd181
0827f9d
 
a5e8d12
38fd181
 
62dc9d8
38fd181
0827f9d
a5e8d12
38fd181
 
62dc9d8
38fd181
1ce1659
 
 
 
 
a5e8d12
 
0827f9d
 
a5e8d12
1ce1659
 
a5e8d12
0827f9d
a5e8d12
 
 
 
0827f9d
a5e8d12
 
0827f9d
 
a5e8d12
0827f9d
 
 
 
 
 
 
 
a5e8d12
38fd181
7e6ffb4
1ce1659
26e3944
e58707f
1ce1659
0827f9d
1ce1659
 
0827f9d
1ce1659
 
0827f9d
 
1ce1659
7e6ffb4
0827f9d
7e6ffb4
0827f9d
7e6ffb4
0827f9d
7e6ffb4
1ce1659
38fd181
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
"""
Author: Khanh Phan
Date: 2024-12-04
"""

import warnings
from typing import Optional

import numpy as np
from pandas import DataFrame
from sentence_transformers import util

from src.application.config import (
    DEVICE,
    MAX_CHAR_SIZE,
    PARAPHRASE_MODEL,
    PARAPHRASE_THRESHOLD,
    PARAPHRASE_THRESHOLD_HUMAN,
    PARAPHRASE_THRESHOLD_MACHINE,
    TOP_URLS_PER_SEARCH,
)
from src.application.text.helper import split_into_sentences
from src.application.text.search import (
    generate_search_phrases,
    search_by_google,
)
from src.application.url_reader import URLReader

warnings.simplefilter(action="ignore", category=FutureWarning)


def find_sentence_source(
    text: list,
    text_index: str,
    sentences_df: DataFrame,
) -> tuple[DataFrame, list]:
    """
    Finds the source URL for a given sentence by searching Google
    and checking for paraphrases.

    Args:
        text (list): A list of sentences.
        text_index (int): The index of the sentence to find the source for.
        sentences_df (pd.DataFrame): A DF to store sentence information.

    Returns:
        tuple: A tuple of the updated sentences_df and a list of image URLs.
            If a source is found, the DF is updated with source information.
            If no source is found, the DF is updated with the original input.
    """
    checked_urls = (
        set()
    )  # Keep track of visited URLs to avoid redundant checks
    searched_phrases = generate_search_phrases(text[text_index])

    for candidate in searched_phrases:
        # Search Google for the generated phrase
        search_results = search_by_google(candidate)

        # Extract URLs from search results
        urls = [item["link"] for item in search_results.get("items", [])]

        # Check the top 3 URLs from the search results
        for url in urls[:TOP_URLS_PER_SEARCH]:
            if url in checked_urls:  # Skip already checked URLs
                continue
            if "bbc.com" not in url:  # TODO: remove when releasing
                continue

            checked_urls.add(url)
            print(f"\t\tChecking URL: {url}")

            content = URLReader(url)

            if content.is_extracted is True:
                if content.title is None or content.text is None:
                    print("\t\t\t↑↑↑ Title or text not found")
                    continue

                source_text = content.title + "\n" + content.text
                if len(source_text) > MAX_CHAR_SIZE:
                    print(f"\t\t\t↑↑↑ More than {MAX_CHAR_SIZE} characters")
                    continue
                print(f"\t\t\t↑↑↑ Title: {content.title}")
                aligned_sentence = check_paraphrase(
                    text[text_index],
                    source_text,
                    url,
                )

                if aligned_sentence["paraphrase"] is False:
                    sentences_df.loc[text_index, "input"] = aligned_sentence[
                        "input"
                    ]
                    sentences_df.loc[text_index, "paraphrase"] = (
                        aligned_sentence["paraphrase"]
                    )
                    return sentences_df, []

                if aligned_sentence["similarity"] > PARAPHRASE_THRESHOLD:
                    columns = [
                        "input",
                        "source",
                        "label",
                        "similarity",
                        "paraphrase",
                        "url",
                    ]
                else:
                    columns = [
                        "input",
                        "label",
                        "paraphrase",
                    ]

                for c in columns:
                    if c in sentences_df.columns:
                        sentences_df.loc[text_index, c] = aligned_sentence[c]

                # Check other sentences for better matches in the same source
                for idx, _ in sentences_df.iterrows():
                    similarity = sentences_df.loc[idx, "similarity"]
                    if similarity is not None:
                        if similarity > PARAPHRASE_THRESHOLD_MACHINE:
                            continue

                    aligned_sentence = check_paraphrase(
                        text[idx],
                        source_text,
                        url,
                    )

                    if (
                        similarity is None
                        or aligned_sentence["similarity"] > similarity
                    ):
                        if (
                            aligned_sentence["similarity"]
                            > PARAPHRASE_THRESHOLD
                        ):
                            columns = [
                                "input",
                                "source",
                                "label",
                                "similarity",
                                "url",
                            ]
                        else:
                            columns = [
                                "input",
                                "label",
                            ]
                        for c in columns:
                            if c in sentences_df.columns:
                                sentences_df.loc[idx, c] = aligned_sentence[c]
                return sentences_df, content.images

    # If no source is found, update the DF with the original input
    sentences_df.loc[text_index, "input"] = text[text_index]
    return sentences_df, []


def check_paraphrase(input_text: str, source_text: str, url: str) -> dict:
    """
    Checks if the input text is a paraphrase of the source text
        by comparing sentence-level similarities.

    Args:
        input_text (str): The text to be checked for paraphrasing.
        source_text (str): The source text to compare against.
        url (str): The URL of the source text (for storing in the result).

    Returns:
        dict: A dictionary containing the alignment information, including:
                - "input": Concatenated input sentences.
                - "source": Concatenated best-matched source sentences.
                - "similarity": Average cosine similarity score.
                - "label": Label determined based on similarity.
                - "paraphrase": Boolean indicating if it's a paraphrase.
                - "url": The source URL.
    """
    # Extract sentences from input text and web page
    input_sentences = split_into_sentences(input_text)

    if not source_text:
        return {}
    source_sentences = split_into_sentences(source_text)

    if not input_sentences or not source_sentences:
        return {}

    # Handle external references in source sentences
    # This is specified for bbc news articles
    additional_sentences = []
    for sentence in source_sentences:
        if ", external" in sentence:
            additional_sentences.append(sentence.replace(", external", ""))
    source_sentences.extend(additional_sentences)

    # Encode sentences into embeddings using the PARAPHASE_MODEL
    embeddings1 = PARAPHRASE_MODEL.encode(
        input_sentences,
        convert_to_tensor=True,
        device=DEVICE,
        show_progress_bar=False,
    )
    embeddings2 = PARAPHRASE_MODEL.encode(
        source_sentences,
        convert_to_tensor=True,
        device=DEVICE,
        show_progress_bar=False,
    )

    # Compute cosine similarity matrix
    similarity_matrix = util.cos_sim(embeddings1, embeddings2).cpu().numpy()

    # Find sentence alignments
    inputs = ""
    sources = ""
    similarities = []

    for i, sentence in enumerate(input_sentences):
        max_sim_index = np.argmax(similarity_matrix[i])
        max_similarity = similarity_matrix[i][max_sim_index]
        best_matched_sentence = source_sentences[max_sim_index]

        inputs += sentence + " "
        sources += best_matched_sentence + " "
        similarities.append(max_similarity)

    # Calculate average similarity and determine paraphrase label
    similarity = sum(similarities) / len(similarities)
    label, is_paraphrased = determine_label(max_similarity)

    # Create the alignment dictionary
    alignment = {
        "input": inputs,
        "source": sources,
        "similarity": similarity,
        "label": label,
        "paraphrase": is_paraphrased,
        "url": url,
    }

    print(f'Result: [{alignment["similarity"]}] {alignment["source"]}')

    return alignment


def determine_label(similarity: float) -> tuple[Optional[str], bool]:
    """
    Determines a label and paraphrase status based on the similarity score.

    Args:
        similarity (float): The similarity score between two texts.

    Returns:
        tuple: A tuple containing the label (str or None)
                and a boolean indicating if it's a paraphrase.
    """
    if similarity >= PARAPHRASE_THRESHOLD_HUMAN:
        return "HUMAN", True  # Human paraphrase
    elif similarity >= PARAPHRASE_THRESHOLD_MACHINE:
        return "MACHINE", True  # Machine paraphrase
    else:
        return None, False  # Not a paraphrase


if __name__ == "__main__":
    pass