Spaces:
Running
Running
File size: 5,896 Bytes
0827f9d 62dc9d8 0827f9d bfe6692 62dc9d8 0827f9d 00b1038 0827f9d 62dc9d8 00b1038 1ce1659 da7dbd0 1ce1659 62dc9d8 1ce1659 62dc9d8 38fd181 1ce1659 0827f9d 1ce1659 0827f9d 1ce1659 0827f9d 1ce1659 0827f9d 56cf7e3 0827f9d 1ce1659 0827f9d 1ce1659 b73a4fc 62dc9d8 00b1038 0827f9d 1ce1659 0827f9d 1ce1659 006f396 62dc9d8 bfe6692 62dc9d8 00b1038 0827f9d 62dc9d8 00b1038 62dc9d8 0827f9d 62dc9d8 0827f9d 62dc9d8 0827f9d 62dc9d8 0827f9d 62dc9d8 bfe6692 62dc9d8 0827f9d 62dc9d8 0827f9d 62dc9d8 0827f9d 62dc9d8 0827f9d 62dc9d8 0827f9d 62dc9d8 bfe6692 62dc9d8 0827f9d 62dc9d8 0827f9d 62dc9d8 0827f9d 62dc9d8 0827f9d 62dc9d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
"""
Author: Khanh Phan
Date: 2024-12-04
"""
from openai import OpenAIError
from sentence_transformers import util
from transformers import pipeline
from src.application.config import (
AI_TEXT_DECTECTION_MODEL,
AZUREOPENAI_CLIENT,
DEVICE,
GPT_PARAPHRASE_MODELS,
HUMAN,
MODEL_HUMAN_LABEL,
PARAPHRASE_MODEL,
PREFIX,
UNKNOWN,
)
from src.application.text.ai_classification import (
load_model_and_tokenizer,
predict,
)
def detect_text_by_ai_model(
input_text: str,
model: str = AI_TEXT_DECTECTION_MODEL,
max_length: int = 512,
) -> tuple:
"""
Model: RADAR-Vicuna-7B
Ref: https://huggingface.co/TrustSafeAI/RADAR-Vicuna-7B
Detects if text is human or machine generated.
Args:
input_text (str): The text to be classified.
model (str, optional): The name of the AI text detection model.
max_length (int, optional): The maximum length of the input text.
Returns:
tuple: (label, confidence_score)
where label is HUMAN or MACHINE.
"""
try:
# Create a text classification pipeline using the specified model.
pipe = pipeline(
"text-classification",
model=model,
tokenizer=model,
max_length=max_length, # TODO: consider: removal
truncation=True,
device_map="auto", # good for GPU usage
)
# Replace HTML line breaks with spaces to improve processing.
input_text = input_text.replace("<br>", " ")
# Perform text classification using the pipeline.
result = pipe(input_text)[0]
confidence_score = result["score"]
# Determine the label based on the model's prediction.
if result["label"] == MODEL_HUMAN_LABEL[model]:
label = HUMAN
else:
# label = MACHINE
generated_model, _ = predict_generation_model(input_text)
label = f"{PREFIX}{generated_model}"
return label, confidence_score
except Exception as e: # Add exception handling
print(f"Error in Roberta model inference: {e}")
return UNKNOWN, 0.5 # Return UNKNOWN and 0.0 confidence if error
def predict_generation_model(text: str) -> tuple[str, float]:
"""
Predicts if text is generated by gpt-4o or gpt-4o-mini models.
Args:
text (str): The input text to be analyzed.
Returns:
tuple: (label, confidence_score)
where label is gpt-4o or gpt-4o-mini,
and confidence_score is the highest similarity.
"""
tokenizer, model = load_model_and_tokenizer()
predictions = predict(text, model, tokenizer)
return predictions[0]["prediction"], predictions[0]["confidence"]
def predict_generation_model_by_reparaphrasing(text: str) -> tuple[str, float]:
"""
Predicts if text is generated by gpt-4o or gpt-4o-mini models.
Compares the input text against the paraphrased text by the models.
Args:
text (str): The input text to be analyzed.
Returns:
tuple: (label, confidence_score)
where label is gpt-4o or gpt-4o-mini,
and confidence_score is the highest similarity.
"""
best_similarity = 0
best_model = GPT_PARAPHRASE_MODELS[0]
for model in GPT_PARAPHRASE_MODELS:
# Generate paraphrased text using the current model.
paraphrased_text = paraphrase_by_AI(text, model)
# Skip to the next model if paraphrasing fails (returns None).
if paraphrased_text is None:
continue
# Similarity between the original text and the paraphrased text.
similarity = measure_text_similarity(text, paraphrased_text)
# Update the best similarity
if similarity > best_similarity:
best_similarity = similarity
best_model = model
return best_model, best_similarity
def paraphrase_by_AI(input_text: str, model: str = "gpt-4o-mini") -> str:
"""
Paraphrases text using a given AI model.
Args:
input_text (str): The text to be paraphrased.
model (str, optional): The AI model to use for paraphrasing.
Returns:
str: The paraphrased text, or None if an error occurs.
"""
prompt = f"""
Paraphrase the following news, only output the paraphrased text:
{input_text}
"""
try:
response = AZUREOPENAI_CLIENT.chat.completions.create(
model=model,
messages=[
{"role": "user", "content": prompt},
],
# max_tokens=100, # Limit the number of tokens in the response.
# temperature=0.7, # Control the randomness of the response.
# top_p=0.9, # Control the nucleus sampling.
# n=1, # Generate multiple responses.
)
paraphrased_text = response.choices[0].message.content
return paraphrased_text
except OpenAIError as e: # Add exception handling
print(f"Error in AI model inference: {e}")
return None
def measure_text_similarity(text1: str, text2: str) -> float:
"""
Measures the similarity between two texts
using cosine similarity of their sentence embeddings.
Args:
text1 (str): The first text string.
text2 (str): The second text string.
Returns:
float: The cosine similarity score between the two texts.
"""
# Generate sentence embeddings
embeddings1 = PARAPHRASE_MODEL.encode(
text1,
convert_to_tensor=True,
device=DEVICE,
show_progress_bar=False,
)
embeddings2 = PARAPHRASE_MODEL.encode(
text2,
convert_to_tensor=True,
device=DEVICE,
show_progress_bar=False,
)
# Compute cosine similarity matrix
similarity = util.cos_sim(embeddings1, embeddings2).cpu().numpy()
return similarity[0][0]
|