Spaces:
Sleeping
Sleeping
File size: 15,314 Bytes
0827f9d 1ce1659 38fd181 b73a4fc 1ce1659 38fd181 1ce1659 00b1038 1ce1659 0827f9d 38fd181 1ce1659 38fd181 1ce1659 38fd181 1ce1659 38fd181 0827f9d 1ce1659 38fd181 0827f9d 1ce1659 0827f9d 38fd181 1ce1659 38fd181 0827f9d 1ce1659 0827f9d 38fd181 0827f9d 1ce1659 38fd181 1ce1659 0827f9d 38fd181 1ce1659 38fd181 1ce1659 38fd181 1ce1659 38fd181 1ce1659 38fd181 1ce1659 38fd181 1ce1659 38fd181 a5e8d12 38fd181 1ce1659 38fd181 1ce1659 a5e8d12 1ce1659 a5e8d12 00b1038 38fd181 1ce1659 38fd181 1ce1659 38fd181 1ce1659 38fd181 1ce1659 38fd181 1ce1659 38fd181 a5e8d12 38fd181 1ce1659 38fd181 1ce1659 a5e8d12 1ce1659 38fd181 1ce1659 a5e8d12 38fd181 1ce1659 38fd181 a5e8d12 1ce1659 38fd181 1ce1659 38fd181 1ce1659 38fd181 1ce1659 38fd181 0827f9d 26e3944 38fd181 26e3944 bfe6692 0827f9d 26e3944 38fd181 0827f9d 26e3944 38fd181 26e3944 0827f9d 26e3944 38fd181 0827f9d 26e3944 0827f9d 0260491 26e3944 38fd181 0827f9d a6b0abd 0827f9d a6b0abd 0827f9d a6b0abd 0827f9d a6b0abd 0827f9d a6b0abd 0827f9d a6b0abd 0827f9d a6b0abd b73a4fc 00b1038 b73a4fc 00b1038 e58707f b73a4fc 00b1038 e58707f b73a4fc 00b1038 b73a4fc e58707f b73a4fc e58707f b73a4fc e58707f b73a4fc e58707f b73a4fc e58707f b73a4fc 00b1038 e58707f b73a4fc e58707f b73a4fc e58707f b73a4fc e58707f b73a4fc e58707f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 |
"""
Author: Khanh Phan
Date: 2024-12-04
"""
import re
import string
from collections import Counter
from difflib import SequenceMatcher
from nltk.tokenize import (
sent_tokenize,
word_tokenize,
)
from nltk.util import ngrams
from sklearn.feature_extraction.text import TfidfVectorizer
from src.application.config import PREFIX
def clean_text(text: str) -> str:
"""
Cleans and preprocesses a given text string.
Args:
text (str): The input text to be cleaned.
Returns:
str: The cleaned and preprocessed text, containing the first 18 words.
"""
# Define a set of punctuation characters to exclude,
# exclude comma and period due to numbers
punctuations = r"""!"#$%&'()*+-/:;<=>?@[\]^_`{|}~"""
# Lowering text
text = text.lower()
# Removing punctuation
text = "".join([c for c in text if c not in punctuations])
# Removing whitespace and newlines
text = re.sub(r"\s+", " ", text)
# Replace £ with * because Google search doesn't recognize £
text.replace("£", " * ")
# Split the text into a list of words.
words = text.split()
# Join the first 18 words back into a string
text = " ".join(words[:18]) # TODO: consider another number
return text
def remove_punctuation(text: str) -> str:
"""
Removes all punctuation characters from a string, except for periods (.).
Args:
text (str): The input string.
Returns:
str: The string with all punctuation characters removed,
except for periods.
"""
# Create a string containing all punctuation characters,
# except for periods.
punctuation_without_dot = string.punctuation.replace(".", "")
# Create a translation table to remove the specified punctuation chars.
translator = str.maketrans("", "", punctuation_without_dot)
# Apply the translation table to the input text and return the result.
return text.translate(translator)
def get_keywords(text, num_keywords=5):
"""
Extracts the top k keywords from a document using the TF-IDF method.
Args:
text (str): The input text from which to extract keywords.
num_keywords (int, optional): The number of top keywords to return.
Returns:
list: A list of the top keywords extracted from the text.
"""
# Create a TF-IDF Vectorizer
vectorizer = TfidfVectorizer(stop_words="english")
# Fit and transform the text
tfidf_matrix = vectorizer.fit_transform([text])
# Get feature names (words)
feature_names = vectorizer.get_feature_names_out()
# Get TF-IDF scores
tfidf_scores = tfidf_matrix.toarray()[0]
# Sort words by TF-IDF score
word_scores = list(zip(feature_names, tfidf_scores))
word_scores.sort(key=lambda x: x[1], reverse=True)
# Return top keywords
return [word for word, score in word_scores[:num_keywords]]
def get_important_sentences(
sentence: str,
keywords: list[str],
num_sentences: int = 3,
) -> list[str]:
"""
Selects important sentences based on a list of keywords.
Args:
sentence (str): The input sentence.
keywords (list[str]): List of important keywords.
num_sentences (int): Number of sentences to return (default is 3).
Returns:
list: A list of important sentences.
"""
# Clean and split the sentence into sentences
sentences = [s for s in re.split(r"(?<=[.!?])\s+", sentence) if s]
# Calculate the importance score for each sentence
sentence_scores = []
for sentence in sentences:
processed_sentence = clean_text(sentence)
score = 0
words = processed_sentence.lower().split()
word_count = Counter(words)
for keyword in keywords:
if keyword.lower() in word_count:
score += word_count[keyword.lower()]
sentence_scores.append((sentence, score))
# Sort sentences by their scores in descending order
sentence_scores.sort(key=lambda x: x[1], reverse=True)
# Return the top N sentences
return [sentence for sentence, score in sentence_scores[:num_sentences]]
def extract_important_phrases(
text: str,
keywords: list[str],
phrase_length: int = 5,
) -> list[str]:
"""
Extracts important phrases based on a list of keywords.
Phrase length is auto-determined, and overlapped parts are less than 20%.
Args:
text (str): The input text.
keywords (list[str]): List of important keywords.
phrase_length (int): Length of phrases to extract (default: 5 words).
Returns:
list: A list of important phrases.
"""
# Tokenize the text into words
words = word_tokenize(text.lower())
# Determine phrase length (between 3 and 7 words)
phrase_length = min(max(len(words) // 10, 5), 7)
# Generate n-grams (phrases) from the text
phrases = list(ngrams(words, phrase_length))
important_phrases = []
used_indices = set()
for i, phrase in enumerate(phrases):
# Check if the phrase contains any keyword
if any(keyword.lower() in phrase for keyword in keywords):
# Check overlap with previously selected phrases
if not any(abs(i - j) < phrase_length * 0.8 for j in used_indices):
important_phrases.append(clean_text(" ".join(phrase)))
used_indices.add(i)
return important_phrases
def extract_equal_text(text1: str, text2: str) -> tuple[list[int], list[int]]:
"""
Extracts the indices of equal text segments between two strings.
Args:
text1 (str): The first input string.
text2 (str): The second input string.
Returns:
tuple[
list[dict{"start": int, "end": int}],
list[dict{"start": int, "end": int}]
]
- list: the start and end indices of equal segments in text1.
- list: the start and end indices of equal segments in text2.
"""
def cleanup(text: str) -> str:
"""
Cleans up a text string by converting to lowercase
and removing punctuation.
Args:
text (str): The input text.
Returns:
str: The cleaned text.
"""
text = text.lower()
text = text.translate(str.maketrans("", "", string.punctuation))
return text
# Clean and split the input texts into lists of words.
splited_text1 = cleanup(text1).split()
splited_text2 = cleanup(text2).split()
# Create a SequenceMatcher object to compare the cleaned word lists.
s = SequenceMatcher(None, splited_text1, splited_text2)
equal_idx_1 = []
equal_idx_2 = []
# Split the original texts into lists of words (without cleaning).
text1 = text1.split()
text2 = text2.split()
for tag, i1, i2, j1, j2 in s.get_opcodes():
if tag == "equal":
# Append the start and end indices of the equal segment
# to the respective lists.
equal_idx_1.append({"start": i1, "end": i2})
equal_idx_2.append({"start": j1, "end": j2})
# subtext_1 = " ".join(text1[i1:i2])
# subtext_2 = " ".join(text2[j1:j2])
# print(f'{tag:7} a[{i1:2}:{i2:2}] --> b[{j1:2}:{j2:2}] '
# f'{subtext_1!r:>55} --> {subtext_2!r}')
return equal_idx_1, equal_idx_2
def connect_consecutive_indexes(nums: list[int]) -> list[list[int, int]]:
"""
Connects consecutive integers in a list.
Args:
nums (list): A list of integers.
Returns:
list: A list of lists,
where each inner list represents a consecutive range.
For example: [1, 2, 3, 5, 6] becomes [[1, 3], [5, 6]].
"""
if not nums: # Handle empty input
return []
result = []
start = nums[0]
end = nums[0]
for i in range(1, len(nums)):
# Check if the current number is consecutive to the previous end.
if nums[i] == end + 1:
end = nums[i] # Extend the current range.
else:
# Add the current range to the result and start a new range.
result.append([start, end])
start = nums[i]
end = nums[i]
# Add the last range to the result.
result.append([start, end])
return result
def postprocess_label(labels: list[str]) -> str:
"""
Creates a label string with the format
"Partially generated by [label1] and [label2] and ...".
Removes duplicate labels while preserving the original order.
Args:
labels: A list of strings representing labels.
Returns:
A string with the formatted label.
"""
for index, label in enumerate(labels):
# if label.startswith(PREFIX):
# labels[index] = label[len(PREFIX) :]
if PREFIX in label:
labels[index] = label.replace(PREFIX, "")
labels = list(set(labels))
label = ""
if len(labels) == 1:
label += labels[0]
elif len(labels) == 2:
label += f"{labels[0]} and {labels[1]}"
else:
combination = ", ".join(labels[0 : len(labels) - 1])
label += f"{combination}, and {labels[-1]}"
return label
def split_into_sentences(input_text: str) -> list[str]:
"""
Splits input text into sentences by newlines
and then tokenizes each paragraph into sentences.
Args:
input_text (str): The input text as a string.
Returns:
list: A list of sentences.
Returns an empty list if input is not a string.
"""
if not isinstance(input_text, str):
return []
# Split the input text into paragraphs based on newline characters,
# keeping the newline characters.
paragraphs = input_text.splitlines(keepends=True)
sentences = []
for paragraph in paragraphs:
# Remove leading/trailing whitespace
paragraph = paragraph.strip()
if paragraph and paragraph != "\n":
# Tokenize the paragraph into sentences
sentences.extend(sent_tokenize(paragraph))
return sentences
def split_into_paragraphs(input_text: str) -> list[str]:
"""
Splits input text into paragraphs based on newline characters.
Args:
input_text (str): The input text as a string.
Returns:
list: A list of paragraphs.
Returns an empty list if input is not a string.
"""
if not isinstance(input_text, str):
return []
# Split the input text into paragraphs based on newline characters,
# keeping the newline characters.
paragraphs = input_text.splitlines(keepends=True)
out_paragraphs = []
for paragraph in paragraphs:
# Remove leading/trailing whitespace
# paragraph = paragraph.strip()
if paragraph and paragraph != "\n":
# Append the cleaned paragraph to the output list.
out_paragraphs.append(paragraph)
return out_paragraphs
def extract_starts_ends(
colored_idx: list[dict],
) -> tuple[list[int], list[int]]:
"""
Extracts start and end indices from a list of dictionaries.
Args:
colored_idx (list[dict]): A list of dictionaries,
where each dictionary has 'start' and 'end' keys.
Returns:
tuple: A tuple containing two lists:
- starts (list[int]): A list of start indices.
- ends (list[int]): A list of end indices.
"""
starts = []
ends = []
for index in colored_idx:
starts.append(index["start"])
ends.append(index["end"])
return starts, ends
def filter_indices(
starts: list[int],
ends: list[int],
ignore_indices: list[int],
):
"""
Filters start and end indices to exclude any indices present in the
ignore_indices list.
Args:
starts (list[int]): A list of starting indices.
ends (list[int]): A list of ending indices.
Must be the same length as starts.
ignore_indices (list[int]): A list of indices to exclude.
Returns:
A tuple of two lists of integers:
- filtered_starts
- filtered_ends
Returns empty lists if the input is invalid
or if all ranges are filtered out.
Examples:
starts = [0, 5, 10]
ends = [3, 7, 12] # words at the end will not be colored.
ignore_indices = [1, 2, 12, 17]
# Output:
starts = [0, 3, 5, 10]
ends = [1, 4, 7, 12]
"""
if len(starts) != len(ends):
print(
"Error: The 'starts' & 'ends' lists must have the same length.",
)
return [], []
filtered_starts = []
filtered_ends = []
for i in range(len(starts)):
start = starts[i]
end = ends[i]
if end < start:
print(
f"Error: End index {end} < start index {start} at position {i}.", # noqa: E501
)
return [], []
start_end = list(range(start, end + 1, 1))
start_end = list(set(start_end) - set(ignore_indices))
# new_start, new_end = self.extract_sequences(start_end)
new_start, new_end = extract_new_startend(
start,
end,
ignore_indices,
)
filtered_starts.extend(new_start)
filtered_ends.extend(new_end)
return filtered_starts, filtered_ends
def replace_leading_spaces(text: str) -> str:
"""
Replaces leading spaces in a string with ' '.
Args:
text: The input string.
Returns:
The string with leading spaces replaced by ' '.
"""
if text is None:
return None
leading_spaces = 0
for char in text:
if char == " ":
leading_spaces += 1
else:
break
if leading_spaces > 0:
return " " * leading_spaces + text[leading_spaces:]
else:
return text
def extract_new_startend(
start: int,
end: int,
ignore_indices: list[int],
) -> tuple[list[int], list[int]]:
"""
Extracts new start and end indices by splitting a range based on
ignored indices.
Args:
start (int): The starting index of the range.
end (int): The ending index of the range (exclusive).
ignore_indices (list): indices to ignore within the range.
Returns:
tuple: A tuple containing two lists:
- new_starts (list): Starting indices for the sub-ranges.
- new_ends (list): Ending indices for the sub-ranges.
"""
# Sort the set of ignore_indices in ascending order.
indexes = list(set(ignore_indices))
indexes.sort()
new_starts = []
new_ends = []
new_start = start
# If no indices to ignore, return the original range.
if indexes is None or len(indexes) < 1:
new_starts.append(start)
new_ends.append(end)
return new_starts, new_ends
for index in indexes:
# Skip indices that are outside the range [start, end).
if index < start:
continue
elif index >= end:
continue
new_starts.append(new_start)
new_ends.append(index)
new_start = index + 1
new_starts.append(new_start)
new_ends.append(end)
return new_starts, new_ends
|