Spaces:
Running
Running
File size: 17,292 Bytes
0827f9d 56cf7e3 38fd181 56cf7e3 0827f9d 38fd181 56cf7e3 0827f9d 56cf7e3 38fd181 0827f9d b73a4fc 56cf7e3 38fd181 56cf7e3 38fd181 56cf7e3 0827f9d 38fd181 56cf7e3 38fd181 0827f9d 56cf7e3 38fd181 56cf7e3 38fd181 0827f9d 56cf7e3 0827f9d 56cf7e3 0827f9d 26e3944 0827f9d 26e3944 56cf7e3 38fd181 0827f9d 56cf7e3 0827f9d 56cf7e3 0827f9d 56cf7e3 0827f9d 38fd181 0827f9d 38fd181 0827f9d 56cf7e3 38fd181 0827f9d 38fd181 0827f9d 38fd181 56cf7e3 0827f9d 56cf7e3 0827f9d 56cf7e3 38fd181 56cf7e3 0827f9d 56cf7e3 38fd181 0827f9d 56cf7e3 0827f9d 56cf7e3 0827f9d 56cf7e3 0827f9d 56cf7e3 0827f9d 38fd181 0827f9d 38fd181 56cf7e3 38fd181 0827f9d bfe6692 62dc9d8 26e3944 0827f9d 56cf7e3 0827f9d 26e3944 0827f9d 56cf7e3 0827f9d 62dc9d8 26e3944 0827f9d 56cf7e3 26e3944 56cf7e3 0827f9d 62dc9d8 56cf7e3 38fd181 0827f9d 56cf7e3 0827f9d 56cf7e3 38fd181 504f37b 0827f9d 38fd181 0827f9d 38fd181 504f37b 38fd181 56cf7e3 38fd181 0827f9d 56cf7e3 0827f9d 38fd181 0827f9d 38fd181 0827f9d 38fd181 0827f9d 56cf7e3 0827f9d 56cf7e3 38fd181 0827f9d 38fd181 0827f9d 38fd181 0260491 38fd181 0260491 38fd181 56cf7e3 0827f9d 56cf7e3 0827f9d 56cf7e3 0827f9d 56cf7e3 38fd181 0827f9d 56cf7e3 0827f9d 56cf7e3 0827f9d 56cf7e3 0827f9d 56cf7e3 0827f9d 56cf7e3 0827f9d 56cf7e3 0827f9d 56cf7e3 0827f9d 56cf7e3 38fd181 0827f9d 56cf7e3 0827f9d 56cf7e3 0827f9d 56cf7e3 38fd181 0827f9d 38fd181 56cf7e3 38fd181 56cf7e3 0827f9d 56cf7e3 0827f9d 56cf7e3 0827f9d 56cf7e3 0827f9d 56cf7e3 0827f9d 56cf7e3 0827f9d 56cf7e3 0827f9d 56cf7e3 0827f9d 56cf7e3 38fd181 56cf7e3 38fd181 56cf7e3 0827f9d 56cf7e3 a5e8d12 56cf7e3 a5e8d12 38fd181 56cf7e3 a5e8d12 38fd181 56cf7e3 38fd181 56cf7e3 38fd181 56cf7e3 38fd181 56cf7e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 |
"""
Author: Khanh Phan
Date: 2024-12-04
"""
import colorsys
import json
import re
import gradio as gr
import openai
from transformers import pipeline
from src.application.config import (
AZUREOPENAI_CLIENT,
ENTITY_BRIGHTNESS,
ENTITY_DARKEN_COLOR,
ENTITY_LIGHTEN_COLOR,
ENTITY_SATURATION,
GPT_ENTITY_MODEL,
)
ner_pipeline = pipeline("ner")
def extract_entities_gpt(
original_text,
compared_text,
text_generation_model=GPT_ENTITY_MODEL,
) -> str:
"""
Extracts entity pairs with significantly different meanings between
two texts using a GPT model.
Args:
original_text (str): The original text.
compared_text (str): The paraphrased or compared text.
text_generation_model (str, optional): The GPT model
to use for entity extraction.
Returns:
str: The JSON-like string containing the extracted entity pairs,
or an empty string if an error occurs.
"""
# Construct the prompt for the GPT model.
# TODO: Move to config or prompt file
prompt = f"""
Compare the ORIGINAL TEXT and the COMPARED TEXT.
Find entity pairs with significantly different meanings after paraphrasing.
Focus only on these significantly changed entities. These include:
* **Numerical changes:** e.g., "five" -> "ten," "10%" -> "50%"
* **Time changes:** e.g., "Monday" -> "Sunday," "10th" -> "21st"
* **Name changes:** e.g., "Tokyo" -> "New York," "Japan" -> "Japanese"
* **Opposite meanings:** e.g., "increase" -> "decrease," "good" -> "bad"
* **Semantically different words:** e.g., "car" -> "truck," "walk" -> "run"
Exclude entities where the meaning remains essentially the same,
even if the wording is different
(e.g., "big" changed to "large," "house" changed to "residence").
Also exclude purely stylistic changes that don't affect the core meaning.
Output the extracted entity pairs, one pair per line,
in the following JSON-like list format without wrapping characters:
[
["ORIGINAL_TEXT_entity_1", "COMPARED_TEXT_entity_1"],
["ORIGINAL_TEXT_entity_2", "COMPARED_TEXT_entity_2"]
]
If there are no entities that satisfy above condition, output empty list "[]".
---
# ORIGINAL TEXT:
{original_text}
---
# COMPARED TEXT:
{compared_text}
"""
# Generate text using the selected model
try:
# Send the prompt to the GPT model and get the response.
response = AZUREOPENAI_CLIENT.chat.completions.create(
model=text_generation_model,
messages=[{"role": "user", "content": prompt}],
)
# Extract the generated content from the response.
res = response.choices[0].message.content
except openai.OpenAIError as e:
print(f"Error interacting with OpenAI API: {e}")
res = ""
return res
def read_json(json_string: str) -> list[list[str, str]]:
"""
Parses a JSON string and returns a list of unique entity pairs.
Args:
json_string (str): The JSON string to parse.
Returns:
List[List[str, str]]: A list of unique entity pairs,
or an empty list if parsing fails.
"""
try:
# Attempt to parse the JSON string into a Python object
entities = json.loads(json_string)
# Remove duplicates pair of entities
unique_entities = []
for inner_list in entities:
# Check if the current entity pair is already existed.
if inner_list not in unique_entities:
unique_entities.append(inner_list)
return unique_entities
except json.JSONDecodeError as e:
print(f"Error decoding JSON: {e}")
return []
def set_color_brightness(
hex_color: str,
brightness_factor: float = ENTITY_LIGHTEN_COLOR,
) -> str:
"""
Lightens a HEX color by increasing its brightness in HSV space.
Args:
hex_color (str): The HEX color code (e.g., "#RRGGBB").
factor (float, optional): The factor by which to increase brightness.
Returns:
str: The lightened HEX color code.
"""
# Remove the '#' prefix if present.
hex_color = hex_color.lstrip("#")
# Convert the HEX color to RGB (red, green, blue) integers.
r, g, b = (
int(hex_color[0:2], 16), # Red component
int(hex_color[2:4], 16), # Green component
int(hex_color[4:6], 16), # Blue component
)
# Convert RGB to HSV (hue, saturation, value/brightness)
h, s, v = colorsys.rgb_to_hsv(r / 255.0, g / 255.0, b / 255.0)
# Increase the brightness by the specified factor, but cap it at 1.0.
v = min(1.0, v * brightness_factor)
# Convert the modified HSV back to RGB
r, g, b = (int(c * 255) for c in colorsys.hsv_to_rgb(h, s, v))
# Convert the RGB values back to a HEX color code.
return f"#{r:02x}{g:02x}{b:02x}"
def generate_colors(index: int, total_colors: int = 20) -> str:
"""
Generates a unique, evenly spaced color for each index using HSL.
Args:
index (int): The index for which to generate a color.
total_colors (int, optional): The total number of colors to
distribute evenly. Defaults to 20.
Returns:
str: A HEX color code representing the generated color.
"""
# Calculate the hue value based on the index and total number of colors.
# This ensures even distribution of hues across the color spectrum.
hue = index / total_colors # Spread hues in range [0,1]
# Convert HSL to RGB
r, g, b = colorsys.hls_to_rgb(hue, ENTITY_SATURATION, ENTITY_BRIGHTNESS)
# Scale the RGB values from [0, 1] to [0, 255]
r, g, b = int(r * 255), int(g * 255), int(b * 255)
# Convert to hex
return f"#{r:02x}{g:02x}{b:02x}"
def assign_colors_to_entities(entities: list) -> list[dict]:
"""
Assigns unique colors to each entity pair in a list.
Args:
entities (list): A list of entity pairs,
where each pair is a list of two strings.
Example: [["entity1_original", "entity1_compared"]]
Returns:
list: A list of dictionaries,
where each dictionary contains
- "color": the color of entity pair.
- "input": the original entity string.
- "source": the compared entity string.
"""
# Number of colors needed.
total_colors = len(entities)
# Assign colors to entities using their index.
entities_colors = []
for index, entity in enumerate(entities):
color = generate_colors(index, total_colors)
# Append color and index to entities_colors
entities_colors.append(
{"color": color, "input": entity[0], "source": entity[1]},
)
return entities_colors
def highlight_entities(text1: str, text2: str) -> list[dict]:
"""
Highlights entities with significant differences between
two texts by assigning them unique colors.
Args:
text1 (str): input text.
text2 (str): source text.
Returns:
list: A list of dictionaries, where each dictionary
contains the highlighted entity information (color, input, source)
or None if no significant entities are found or an error occurs.
"""
if text1 is None or text2 is None:
return None
# Extract entities with significant differences using a GPT model.
entities_text = extract_entities_gpt(text1, text2)
# Clean up the extracted entities string by removing wrapping characters.
entities_text = entities_text.replace("```json", "").replace("```", "")
# Parse the cleaned entities string into a Python list of entity pairs.
entities = read_json(entities_text)
# If no significant entities are found, return None.
if len(entities) == 0:
return None
# Assign unique colors to the extracted entities.
entities_with_colors = assign_colors_to_entities(entities)
return entities_with_colors
def apply_highlight(
text: str,
entities_with_colors: list[dict],
key: str = "input",
count: int = 0,
) -> tuple[str, list[int]]:
"""
Applies highlighting to specified entities within a text,
assigning them unique colors and index labels.
Args:
text (str): The text to highlight.
entities_with_colors (list): A list of dictionaries,
where each dictionary represents an entity and its color.
key (str, optional): The key in the entity dictionary that
contains the entity text to highlight.
count (int, optional): An offset to add to the index labels.
Returns:
tuple:
- A tuple containing the highlighted text (str).
- A list of index positions (list).
"""
if entities_with_colors is None:
return text, []
# Start & end indices of highlighted entities.
all_starts = []
all_ends = []
highlighted_text = ""
temp_text = text
# Apply highlighting to each entity.
for index, entity in enumerate(entities_with_colors):
highlighted_text = ""
starts = []
ends = []
for m in re.finditer(
# Word boundaries (\b) and escape special characters
r"\b" + re.escape(entity[key]) + r"\b",
temp_text,
):
starts.append(m.start())
ends.append(m.end())
all_starts.extend(starts)
all_ends.extend(ends)
# Get the colors for each occurrence of the entity.
color = entities_with_colors[index]["color"]
# Lightened color for background text
entity_color = set_color_brightness(
color,
brightness_factor=ENTITY_LIGHTEN_COLOR,
)
# Darker color for background label (index)
label_color = set_color_brightness(
entity_color,
brightness_factor=ENTITY_DARKEN_COLOR,
)
# Apply highlighting to each occurrence of the entity.
prev_end = 0
for start, end in zip(starts, ends):
# Non-highlighted text before the entity.
highlighted_text += temp_text[prev_end:start]
# Create the index label with the specified color and style.
index_label = (
f'<span_style="background-color:{label_color};color:white;'
f"padding:1px_4px;border-radius:4px;font-size:12px;"
f'font-weight:bold;display:inline-block;margin-right:4px;">{index + 1 + count}</span>' # noqa: E501
)
# Highlighted entity with the specified color and style.
highlighted_text += (
f'<span_style="background-color:{entity_color};color:black;'
f'border-radius:3px;font-size:14px;display:inline-block;">'
f"{index_label}{temp_text[start:end]}</span>"
)
prev_end = end
# Append any remaining text after the last entity.
highlighted_text += temp_text[prev_end:]
# Update the temporary text with the highlighted text.
temp_text = highlighted_text
if highlighted_text == "":
return text, []
# Get the index list of the highlighted text.
highlight_idx_list = get_index_list(highlighted_text)
return highlighted_text, highlight_idx_list
def get_index_list(highlighted_text: str) -> list[int]:
"""
Generates a list of indices of highlighted words within a text.
Args:
highlighted_text (str): The text containing highlighted words
wrapped in HTML-like span tags.
Returns:
list: A list of indices corresponding to the highlighted words.
An empty list if no highlighted words are found.
"""
highlighted_index = []
start_index = None
end_index = None
words = highlighted_text.split()
for index, word in enumerate(words):
# Check if the word starts with a highlighted word.
if word.startswith("<span_style"):
start_index = index
# Check if the word ends with a closing span tag
if word.endswith("</span>"):
end_index = index
if start_index is not None:
# Add the range of indices to the result list.
highlighted_index.extend(
list(
range(
start_index,
end_index + 1,
),
),
)
start_index = None
end_index = None
return highlighted_index
def extract_entities(text: str):
"""
Extracts named entities from the given text.
Args:
text (str): The input text to extract entities from.
Returns:
list: A list of unique extracted entities (string).
"""
# Apply the Named Entity Recognition (NER) pipeline to the input text.
output = ner_pipeline(text)
# Extract words from the NER pipeline output.
words = extract_words(output)
# Combine subwords into complete words.
words = combine_subwords(words)
# Append the entities if it's not a duplicate.
entities = []
for entity in words:
if entity not in entities:
entities.append(entity)
return entities
def extract_words(entities: list[dict]) -> list[str]:
"""
Extracts the words from a list of entities.
Args:
entities (list): A list of entities,
where each entity is expected to be a dictionary
containing a "word" key.
Returns:
list[str]: A list of words extracted from the entities.
"""
words = []
for entity in entities:
words.append(entity["word"])
return words
def combine_subwords(word_list):
"""
Combines subwords (indicated by "##") with the preceding word in a list.
Args:
word_list (list): A list of words,
where subwords are prefixed with "##".
Returns:
list: A new list with subwords combined with their preceding words
and hyphenated words combined.
"""
result = []
i = 0
while i < len(word_list):
if word_list[i].startswith("##"):
# Remove "##" and append the remaining to the previous word
result[-1] += word_list[i][2:]
elif i < len(word_list) - 2 and word_list[i + 1] == "-":
# Combine the current word, the hyphen, and the next word.
result.append(word_list[i] + word_list[i + 1] + word_list[i + 2])
i += 2 # Skip the next two words (hyphen and the following word)
else:
# If neither a subword nor a hyphenated word,
# append the current word to the result list.
result.append(word_list[i])
i += 1
return result
original_text = """
Title: UK pledges support for Ukraine with 100-year pact
Content: Sir Keir Starmer has pledged to put Ukraine in the "strongest
possible position" on a trip to Kyiv where he signed a "landmark"
100-year pact with the war-stricken country. The prime minister's
visit on Thursday was at one point marked by loud blasts and air
raid sirens after a reported Russian drone attack was intercepted
by Ukraine's defence systems. Acknowledging the "hello" from Russia,
Volodymyr Zelensky said Ukraine would send its own "hello back".
An estimated one million people have been killed or wounded in the
war so far. As the invasion reaches the end of its third year, Ukraine
is losing territory in the east. Zelensky praised the UK's commitment
on Thursday, amid wider concerns that the US President-elect Donald
Trump, who is set to take office on Monday, could potentially reduce aid.
"""
compared_text = """
Title: Japan pledges support for Ukraine with 100-year pact
Content: A leading Japanese figure has pledged to put Ukraine
in the "strongest possible position" on a trip to Kyiv where
they signed a "landmark" 100-year pact with the war-stricken country.
The visit on Thursday was at one point marked by loud blasts and air
raid sirens after a reported Russian drone attack was intercepted by
Ukraine's defence systems. Acknowledging the "hello" from Russia,
Volodymyr Zelensky said Ukraine would send its own "hello back".
An estimated one million people have been killed or wounded in the
war so far. As the invasion reaches the end of its third year, Ukraine
is losing territory in the east. Zelensky praised Japan's commitment
on Thursday, amid wider concerns that the next US President, who is
set to take office on Monday, could potentially reduce aid.
"""
if __name__ == "__main__":
with gr.Blocks() as demo:
gr.Markdown("### Highlight Matching Parts Between Two Texts")
text1_input = gr.Textbox(
label="Text 1",
lines=5,
value=original_text,
)
text2_input = gr.Textbox(
label="Text 2",
lines=5,
value=compared_text,
)
submit_button = gr.Button("Highlight Matches")
output1 = gr.HTML("<br>" * 10)
output2 = gr.HTML("<br>" * 10)
submit_button.click(
fn=highlight_entities,
inputs=[text1_input, text2_input],
outputs=[output1, output2],
)
# Launch the Gradio app
demo.launch()
|