File size: 7,335 Bytes
22e1b62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import argparse
import logging
import os

import pandas as pd
import pytorch_lightning as pl
import timm
import torch
import torchvision.transforms as transforms
from data_split import *
from dataloader import *
from PIL import Image
from pytorch_lightning.callbacks import (
    EarlyStopping,
    ModelCheckpoint,
)
from sklearn.metrics import roc_auc_score
from torchmetrics import (
    Accuracy,
    Recall,
)
from utils_sampling import *

logging.basicConfig(
    filename="training.log", filemode="w", level=logging.INFO, force=True
)


class ImageClassifier(pl.LightningModule):
    def __init__(self, lmd=0):
        super().__init__()
        self.model = timm.create_model(
            "resnet50", pretrained=True, num_classes=1
        )
        self.accuracy = Accuracy(task="binary", threshold=0.5)
        self.recall = Recall(task="binary", threshold=0.5)
        self.validation_outputs = []
        self.lmd = lmd

    def forward(self, x):
        return self.model(x)

    def training_step(self, batch):
        images, labels, _ = batch
        outputs = self.forward(images).squeeze()

        print(f"Shape of outputs (training): {outputs.shape}")
        print(f"Shape of labels (training): {labels.shape}")

        loss = F.binary_cross_entropy_with_logits(outputs, labels.float())
        logging.info(f"Training Step - ERM loss: {loss.item()}")
        loss += self.lmd * (outputs**2).mean()  # SD loss penalty
        logging.info(f"Training Step - SD loss: {loss.item()}")
        return loss

    def validation_step(self, batch):
        images, labels, _ = batch
        outputs = self.forward(images).squeeze()

        if outputs.shape == torch.Size([]):
            return

        print(f"Shape of outputs (validation): {outputs.shape}")
        print(f"Shape of labels (validation): {labels.shape}")

        loss = F.binary_cross_entropy_with_logits(outputs, labels.float())
        preds = torch.sigmoid(outputs)
        self.log("val_loss", loss, prog_bar=True, sync_dist=True)
        self.log(
            "val_acc",
            self.accuracy(preds, labels.int()),
            prog_bar=True,
            sync_dist=True,
        )
        self.log(
            "val_recall",
            self.recall(preds, labels.int()),
            prog_bar=True,
            sync_dist=True,
        )
        output = {"val_loss": loss, "preds": preds, "labels": labels}
        self.validation_outputs.append(output)
        logging.info(f"Validation Step - Batch loss: {loss.item()}")
        return output

    def predict_step(self, batch):
        images, label, domain = batch
        outputs = self.forward(images).squeeze()
        preds = torch.sigmoid(outputs)
        return preds, label, domain

    def on_validation_epoch_end(self):
        if not self.validation_outputs:
            logging.warning("No outputs in validation step to process")
            return
        preds = torch.cat([x["preds"] for x in self.validation_outputs])
        labels = torch.cat([x["labels"] for x in self.validation_outputs])
        if labels.unique().size(0) == 1:
            logging.warning("Only one class in validation step")
            return
        auc_score = roc_auc_score(labels.cpu(), preds.cpu())
        self.log("val_auc", auc_score, prog_bar=True, sync_dist=True)
        logging.info(f"Validation Epoch End - AUC score: {auc_score}")
        self.validation_outputs = []

    def configure_optimizers(self):
        optimizer = torch.optim.Adam(self.model.parameters(), lr=0.0005)
        return optimizer


checkpoint_callback = ModelCheckpoint(
    monitor="val_loss",
    dirpath="./model_checkpoints/",
    filename="image-classifier-{step}-{val_loss:.2f}",
    save_top_k=3,
    mode="min",
    every_n_train_steps=1001,
    enable_version_counter=True,
)

early_stop_callback = EarlyStopping(
    monitor="val_loss",
    patience=4,
    mode="min",
)


def load_image(image_path, transform=None):
    image = Image.open(image_path).convert("RGB")

    if transform:
        image = transform(image)

    return image


def predict_single_image(image_path, model, transform=None):
    image = load_image(image_path, transform)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    model.to(device)

    image = image.to(device)

    model.eval()

    with torch.no_grad():
        image = image.unsqueeze(0)
        output = model(image).squeeze()
        print(output)
        prediction = torch.sigmoid(output).item()

    return prediction


parser = argparse.ArgumentParser()
parser.add_argument(
    "--ckpt_path", help="checkpoint to continue from", required=False
)
parser.add_argument(
    "--predict", help="predict on test set", action="store_true"
)
parser.add_argument("--reset", help="reset training", action="store_true")
parser.add_argument(
    "--predict_image",
    help="predict the class of a single image",
    action="store_true",
)
parser.add_argument(
    "--image_path",
    help="path to the image to predict",
    type=str,
    required=False,
)
args = parser.parse_args()

train_domains = [0, 1, 4]
val_domains = [0, 1, 4]
lmd_value = 0

if args.predict:
    test_dl = load_dataloader(
        [0, 1, 2, 3, 4], "test", batch_size=128, num_workers=1
    )
    model = ImageClassifier.load_from_checkpoint(args.ckpt_path)
    trainer = pl.Trainer()
    predictions = trainer.predict(model, dataloaders=test_dl)
    preds, labels, domains = zip(*predictions)
    preds = torch.cat(preds).cpu().numpy()
    labels = torch.cat(labels).cpu().numpy()
    domains = torch.cat(domains).cpu().numpy()
    print(preds.shape, labels.shape, domains.shape)
    df = pd.DataFrame({"preds": preds, "labels": labels, "domains": domains})
    filename = "preds-" + args.ckpt_path.split("/")[-1]
    df.to_csv(f"outputs/{filename}.csv", index=False)
elif args.predict_image:
    image_path = args.image_path
    model = ImageClassifier.load_from_checkpoint(args.ckpt_path)

    # Define the transformations for the image
    transform = transforms.Compose(
        [
            transforms.Resize((224, 224)),  # Image size expected by ResNet50
            transforms.ToTensor(),
            transforms.Normalize(
                mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
            ),
        ]
    )

    prediction = predict_single_image(image_path, model, transform)
    print("prediction", prediction)

    # Output the prediction
    print(
        f"Prediction for {image_path}: {'Human' if prediction <= 0.001 else 'Generated'}"
    )
else:
    train_dl = load_dataloader(
        train_domains, "train", batch_size=128, num_workers=4
    )
    logging.info("Training dataloader loaded")
    val_dl = load_dataloader(val_domains, "val", batch_size=128, num_workers=4)
    logging.info("Validation dataloader loaded")

    if args.reset:
        model = ImageClassifier.load_from_checkpoint(args.ckpt_path)
    else:
        model = ImageClassifier(lmd=lmd_value)
    trainer = pl.Trainer(
        callbacks=[checkpoint_callback, early_stop_callback],
        max_steps=20000,
        val_check_interval=1000,
        check_val_every_n_epoch=None,
    )
    trainer.fit(
        model=model,
        train_dataloaders=train_dl,
        val_dataloaders=val_dl,
        ckpt_path=args.ckpt_path if not args.reset else None,
    )