Spaces:
Sleeping
Sleeping
File size: 7,311 Bytes
6610027 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
# USAGE
# python detect_mask_image.py --image images/pic1.jpeg
import argparse
import os
import cv2
import numpy as np
# import the necessary packages
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.image import img_to_array
def mask_image():
# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument(
"-i",
"--image",
required=True,
help="path to input image",
)
ap.add_argument(
"-f",
"--face",
type=str,
default="face_detector",
help="path to face detector model directory",
)
ap.add_argument(
"-m",
"--model",
type=str,
default="mask_detector.model",
help="path to trained face mask detector model",
)
ap.add_argument(
"-c",
"--confidence",
type=float,
default=0.5,
help="minimum probability to filter weak detections",
)
args = vars(ap.parse_args())
# load our serialized face detector model from disk
print("[INFO] loading face detector model...")
prototxtPath = os.path.sep.join([args["face"], "deploy.prototxt"])
weightsPath = os.path.sep.join(
[
args["face"],
"res10_300x300_ssd_iter_140000.caffemodel",
],
)
net = cv2.dnn.readNet(prototxtPath, weightsPath)
# load the face mask detector model from disk
print("[INFO] loading face mask detector model...")
model = load_model(args["model"])
# load the input image from disk, clone it, and grab the image spatial
# dimensions
image = cv2.imread(args["image"])
(h, w) = image.shape[:2]
# construct a blob from the image
blob = cv2.dnn.blobFromImage(
image,
1.0,
(300, 300),
(104.0, 177.0, 123.0),
)
# pass the blob through the network and obtain the face detections
print("[INFO] computing face detections...")
net.setInput(blob)
detections = net.forward()
# loop over the detections
for i in range(0, detections.shape[2]):
# extract the confidence (i.e., probability) associated with
# the detection
confidence = detections[0, 0, i, 2]
# filter out weak detections by ensuring the confidence is
# greater than the minimum confidence
if confidence > args["confidence"]:
# compute the (x, y)-coordinates of the bounding box for
# the object
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
# ensure the bounding boxes fall within the dimensions of
# the frame
(startX, startY) = (max(0, startX), max(0, startY))
(endX, endY) = (min(w - 1, endX), min(h - 1, endY))
# extract the face ROI, convert it from BGR to RGB channel
# ordering, resize it to 224x224, and preprocess it
face = image[startY:endY, startX:endX]
face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
face = cv2.resize(face, (224, 224))
face = img_to_array(face)
face = preprocess_input(face)
face = np.expand_dims(face, axis=0)
# pass the face through the model to determine if the face
# has a mask or not
(mask, withoutMask) = model.predict(face)[0]
# determine the class label and color we'll use to draw
# the bounding box and text
label = "Mask" if mask > withoutMask else "No Mask"
color = (0, 255, 0) if label == "Mask" else (0, 0, 255)
# include the probability in the label
label = f"{label}: {max(mask, withoutMask) * 100:.2f}%"
# display the label and bounding box rectangle on the output
# frame
cv2.putText(
image,
label,
(startX, startY - 10),
cv2.FONT_HERSHEY_SIMPLEX,
0.45,
color,
2,
)
cv2.rectangle(image, (startX, startY), (endX, endY), color, 2)
# show the output image
cv2.imshow("Output", image)
cv2.waitKey(0)
def detect_mask_in_image(image, faceNet, maskNet):
# dimensions
(h, w) = image.shape[:2]
# construct a blob from the image
blob = cv2.dnn.blobFromImage(
image,
1.0,
(300, 300),
(104.0, 177.0, 123.0),
) # TODO: add to config
# pass the blob through the network and obtain the face detections
print("[INFO] computing face detections...")
faceNet.setInput(blob)
detections = faceNet.forward()
face_count = 0
# image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# loop over the detections
for i in range(0, detections.shape[2]):
# extract the confidence associated with the detection
confidence = detections[0, 0, i, 2]
# print(f"[INFO] face {i}: {confidence}")
# filter out weak detections by ensuring the confidence is
# greater than the minimum confidence
if confidence > 0.5:
face_count += 1
# compute the (x, y)-coordinates of the object's bbox
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
# ensure the bounding boxes fall within the dimensions of
# the frame
(startX, startY) = (max(0, startX), max(0, startY))
(endX, endY) = (min(w - 1, endX), min(h - 1, endY))
# extract the face ROI
# ordering, resize it to 224x224, and preprocess it
face = image[startY:endY, startX:endX]
face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
face = cv2.resize(face, (224, 224))
face = img_to_array(face)
face = preprocess_input(face)
face = np.expand_dims(face, axis=0)
# pass the face through the model to determine if the face
# has a mask or not
(mask, withoutMask) = maskNet.predict(face)[0]
# determine the class label and color we'll use to draw
# the bounding box and text
label = "Mask" if mask > withoutMask else "No Mask"
color = (0, 255, 0) if label == "Mask" else (255, 0, 0)
# include the probability in the label
label = f"{label}: {max(mask, withoutMask) * 100:.2f}%"
# display the label & bbox rectangle on the output frame
cv2.putText(
image,
label,
(startX, startY - 10),
cv2.FONT_HERSHEY_SIMPLEX,
0.45,
color,
2,
)
cv2.rectangle(image, (startX, startY), (endX, endY), color, 2)
else:
break
text = f"[INFO] Detect {face_count} face(s)."
print(text)
cv2.putText(
image,
text,
(10, 30),
cv2.FONT_HERSHEY_SIMPLEX,
0.70,
(0, 255, 0),
2,
)
return image
if __name__ == "__main__":
mask_image()
|