|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from functools import partial |
|
|
|
import math |
|
import warnings |
|
import numpy as np |
|
import collections.abc |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint as cp |
|
from itertools import repeat |
|
|
|
|
|
def _no_grad_trunc_normal_(tensor, mean, std, a, b): |
|
|
|
|
|
def norm_cdf(x): |
|
|
|
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 |
|
|
|
if (mean < a - 2 * std) or (mean > b + 2 * std): |
|
warnings.warn( |
|
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " |
|
"The distribution of values may be incorrect.", |
|
stacklevel=2, |
|
) |
|
|
|
with torch.no_grad(): |
|
|
|
|
|
|
|
l = norm_cdf((a - mean) / std) |
|
u = norm_cdf((b - mean) / std) |
|
|
|
|
|
|
|
tensor.uniform_(2 * l - 1, 2 * u - 1) |
|
|
|
|
|
|
|
tensor.erfinv_() |
|
|
|
|
|
tensor.mul_(std * math.sqrt(2.0)) |
|
tensor.add_(mean) |
|
|
|
|
|
tensor.clamp_(min=a, max=b) |
|
return tensor |
|
|
|
|
|
def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0): |
|
r"""Fills the input Tensor with values drawn from a truncated |
|
normal distribution. The values are effectively drawn from the |
|
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` |
|
with values outside :math:`[a, b]` redrawn until they are within |
|
the bounds. The method used for generating the random values works |
|
best when :math:`a \leq \text{mean} \leq b`. |
|
Args: |
|
tensor: an n-dimensional `torch.Tensor` |
|
mean: the mean of the normal distribution |
|
std: the standard deviation of the normal distribution |
|
a: the minimum cutoff value |
|
b: the maximum cutoff value |
|
Examples: |
|
>>> w = torch.empty(3, 5) |
|
>>> nn.init.trunc_normal_(w) |
|
""" |
|
return _no_grad_trunc_normal_(tensor, mean, std, a, b) |
|
|
|
|
|
def _ntuple(n): |
|
def parse(x): |
|
if isinstance(x, collections.abc.Iterable): |
|
return x |
|
return tuple(repeat(x, n)) |
|
|
|
return parse |
|
|
|
|
|
to_2tuple = _ntuple(2) |
|
|
|
|
|
def drop_path(x, drop_prob: float = 0.0, training: bool = False): |
|
""" |
|
Adapted from timm codebase |
|
""" |
|
if drop_prob == 0.0 or not training: |
|
return x |
|
keep_prob = 1 - drop_prob |
|
shape = (x.shape[0],) + (1,) * (x.ndim - 1) |
|
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) |
|
random_tensor.floor_() |
|
output = x.div(keep_prob) * random_tensor |
|
return output |
|
|
|
|
|
def _cfg(url="", **kwargs): |
|
return { |
|
"url": url, |
|
"num_classes": 400, |
|
"input_size": (3, 224, 224), |
|
"pool_size": None, |
|
"crop_pct": 0.9, |
|
"interpolation": "bicubic", |
|
"mean": (0.5, 0.5, 0.5), |
|
"std": (0.5, 0.5, 0.5), |
|
**kwargs, |
|
} |
|
|
|
|
|
class DropPath(nn.Module): |
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" |
|
|
|
def __init__(self, drop_prob=None): |
|
super(DropPath, self).__init__() |
|
self.drop_prob = drop_prob |
|
|
|
def forward(self, x): |
|
return drop_path(x, self.drop_prob, self.training) |
|
|
|
def extra_repr(self) -> str: |
|
return "p={}".format(self.drop_prob) |
|
|
|
|
|
class Mlp(nn.Module): |
|
|
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
|
|
|
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class CosAttention(nn.Module): |
|
|
|
def __init__( |
|
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0, attn_head_dim=None |
|
): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
if attn_head_dim is not None: |
|
head_dim = attn_head_dim |
|
all_head_dim = head_dim * self.num_heads |
|
|
|
|
|
if qk_scale is None: |
|
self.scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True) |
|
else: |
|
self.scale = qk_scale |
|
|
|
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) |
|
if qkv_bias: |
|
self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) |
|
self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) |
|
else: |
|
self.q_bias = None |
|
self.v_bias = None |
|
|
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(all_head_dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x): |
|
B, N, C = x.shape |
|
qkv_bias = None |
|
if self.q_bias is not None: |
|
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) |
|
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) |
|
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
attn = F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1) |
|
|
|
|
|
logit_scale = torch.clamp(self.scale, max=4.6052).exp() |
|
|
|
attn = attn * logit_scale |
|
|
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, -1) |
|
|
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class Attention(nn.Module): |
|
|
|
def __init__( |
|
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0, attn_head_dim=None |
|
): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
if attn_head_dim is not None: |
|
head_dim = attn_head_dim |
|
all_head_dim = head_dim * self.num_heads |
|
self.scale = qk_scale or head_dim**-0.5 |
|
|
|
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) |
|
if qkv_bias: |
|
self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) |
|
self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) |
|
else: |
|
self.q_bias = None |
|
self.v_bias = None |
|
|
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(all_head_dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x): |
|
B, N, C = x.shape |
|
qkv_bias = None |
|
if self.q_bias is not None: |
|
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) |
|
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) |
|
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
q = q * self.scale |
|
attn = q @ k.transpose(-2, -1) |
|
|
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, -1) |
|
|
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class Block(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
num_heads, |
|
mlp_ratio=4.0, |
|
qkv_bias=False, |
|
qk_scale=None, |
|
drop=0.0, |
|
attn_drop=0.0, |
|
drop_path=0.0, |
|
init_values=None, |
|
act_layer=nn.GELU, |
|
norm_layer=nn.LayerNorm, |
|
attn_head_dim=None, |
|
cos_attn=False, |
|
): |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
if cos_attn: |
|
self.attn = CosAttention( |
|
dim, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
attn_drop=attn_drop, |
|
proj_drop=drop, |
|
attn_head_dim=attn_head_dim, |
|
) |
|
else: |
|
self.attn = Attention( |
|
dim, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
attn_drop=attn_drop, |
|
proj_drop=drop, |
|
attn_head_dim=attn_head_dim, |
|
) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
|
|
if init_values > 0: |
|
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) |
|
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) |
|
else: |
|
self.gamma_1, self.gamma_2 = None, None |
|
|
|
def forward(self, x): |
|
if self.gamma_1 is None: |
|
x = x + self.drop_path(self.attn(self.norm1(x))) |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
else: |
|
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x))) |
|
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) |
|
return x |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
"""Image to Patch Embedding""" |
|
|
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, num_frames=16, tubelet_size=2): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
num_spatial_patches = (img_size[0] // patch_size[0]) * (img_size[1] // patch_size[1]) |
|
num_patches = num_spatial_patches * (num_frames // tubelet_size) |
|
|
|
self.img_size = img_size |
|
self.tubelet_size = tubelet_size |
|
self.patch_size = patch_size |
|
self.num_patches = num_patches |
|
self.proj = nn.Conv3d( |
|
in_channels=in_chans, |
|
out_channels=embed_dim, |
|
kernel_size=(self.tubelet_size, patch_size[0], patch_size[1]), |
|
stride=(self.tubelet_size, patch_size[0], patch_size[1]), |
|
) |
|
|
|
def forward(self, x, **kwargs): |
|
B, C, T, H, W = x.shape |
|
assert ( |
|
H == self.img_size[0] and W == self.img_size[1] |
|
), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." |
|
|
|
|
|
x = self.proj(x).flatten(2).transpose(1, 2) |
|
return x |
|
|
|
|
|
|
|
|
|
def get_sinusoid_encoding_table(n_position, d_hid): |
|
"""Sinusoid position encoding table""" |
|
|
|
|
|
def get_position_angle_vec(position): |
|
return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)] |
|
|
|
sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)]) |
|
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) |
|
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) |
|
|
|
return torch.tensor(sinusoid_table, dtype=torch.float, requires_grad=False).unsqueeze(0) |
|
|
|
|
|
class VisionTransformer(nn.Module): |
|
"""Vision Transformer with support for patch or hybrid CNN input stage""" |
|
|
|
def __init__( |
|
self, |
|
img_size=224, |
|
patch_size=16, |
|
in_chans=3, |
|
num_classes=1000, |
|
embed_dim=768, |
|
depth=12, |
|
num_heads=12, |
|
mlp_ratio=4.0, |
|
qkv_bias=False, |
|
qk_scale=None, |
|
drop_rate=0.0, |
|
attn_drop_rate=0.0, |
|
drop_path_rate=0.0, |
|
head_drop_rate=0.0, |
|
norm_layer=nn.LayerNorm, |
|
init_values=0.0, |
|
use_learnable_pos_emb=False, |
|
init_scale=0.0, |
|
all_frames=16, |
|
tubelet_size=2, |
|
use_mean_pooling=True, |
|
with_cp=False, |
|
cos_attn=False, |
|
): |
|
super().__init__() |
|
self.num_classes = num_classes |
|
|
|
self.num_features = self.embed_dim = embed_dim |
|
self.tubelet_size = tubelet_size |
|
self.patch_embed = PatchEmbed( |
|
img_size=img_size, |
|
patch_size=patch_size, |
|
in_chans=in_chans, |
|
embed_dim=embed_dim, |
|
num_frames=all_frames, |
|
tubelet_size=tubelet_size, |
|
) |
|
num_patches = self.patch_embed.num_patches |
|
self.with_cp = with_cp |
|
|
|
if use_learnable_pos_emb: |
|
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) |
|
else: |
|
|
|
self.pos_embed = get_sinusoid_encoding_table(num_patches, embed_dim) |
|
|
|
self.pos_drop = nn.Dropout(p=drop_rate) |
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] |
|
self.blocks = nn.ModuleList( |
|
[ |
|
Block( |
|
dim=embed_dim, |
|
num_heads=num_heads, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
drop=drop_rate, |
|
attn_drop=attn_drop_rate, |
|
drop_path=dpr[i], |
|
norm_layer=norm_layer, |
|
init_values=init_values, |
|
cos_attn=cos_attn, |
|
) |
|
for i in range(depth) |
|
] |
|
) |
|
self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim) |
|
self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None |
|
self.head_dropout = nn.Dropout(head_drop_rate) |
|
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
if use_learnable_pos_emb: |
|
trunc_normal_(self.pos_embed, std=0.02) |
|
|
|
self.apply(self._init_weights) |
|
|
|
self.head.weight.data.mul_(init_scale) |
|
self.head.bias.data.mul_(init_scale) |
|
self.num_frames = all_frames |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=0.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
def get_num_layers(self): |
|
return len(self.blocks) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return {"pos_embed", "cls_token"} |
|
|
|
def get_classifier(self): |
|
return self.head |
|
|
|
def reset_classifier(self, num_classes, global_pool=""): |
|
self.num_classes = num_classes |
|
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
def interpolate_pos_encoding(self, t): |
|
T = 8 |
|
t0 = t // self.tubelet_size |
|
if T == t0: |
|
return self.pos_embed |
|
dim = self.pos_embed.shape[-1] |
|
patch_pos_embed = self.pos_embed.permute(0, 2, 1).reshape(1, dim, 8, 16, 16) |
|
|
|
|
|
t0 = t0 + 0.1 |
|
patch_pos_embed = nn.functional.interpolate( |
|
patch_pos_embed, |
|
scale_factor=(t0 / T, 1, 1), |
|
mode="trilinear", |
|
) |
|
assert int(t0) == patch_pos_embed.shape[-3] |
|
patch_pos_embed = patch_pos_embed.reshape(1, dim, -1).permute(0, 2, 1) |
|
return patch_pos_embed |
|
|
|
def forward_features(self, x): |
|
|
|
B = x.size(0) |
|
T = x.size(2) |
|
|
|
|
|
x = self.patch_embed(x) |
|
|
|
if self.pos_embed is not None: |
|
x = x + self.interpolate_pos_encoding(T).expand(B, -1, -1).type_as(x).to(x.device).clone().detach() |
|
x = self.pos_drop(x) |
|
|
|
for blk in self.blocks: |
|
if self.with_cp: |
|
x = cp.checkpoint(blk, x) |
|
else: |
|
x = blk(x) |
|
|
|
|
|
|
|
if self.fc_norm is not None: |
|
return self.fc_norm(x.mean(1)) |
|
else: |
|
return self.norm(x[:, 0]) |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
x = self.head_dropout(x) |
|
x = self.head(x) |
|
return x |
|
|
|
|
|
def vit_giant_patch14_224(pretrained=False, **kwargs): |
|
model = VisionTransformer( |
|
patch_size=14, |
|
embed_dim=1408, |
|
depth=40, |
|
num_heads=16, |
|
mlp_ratio=48 / 11, |
|
qkv_bias=True, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
**kwargs, |
|
) |
|
model.default_cfg = _cfg() |
|
return model |
|
|