JobShopCPRL / MyRemoteVectorEnv.py
ingambe's picture
wip
d746b98
raw
history blame
5.22 kB
from typing import Tuple, Callable, Optional
from collections import OrderedDict
import gym
import torch
import numpy as np
import ray
from ray.rllib.env.base_env import BaseEnv, ASYNC_RESET_RETURN
from ray.rllib.utils.annotations import PublicAPI
from ray.rllib.utils.typing import MultiEnvDict, EnvType, EnvID, MultiAgentDict
from stable_baselines3.common.vec_env.base_vec_env import VecEnvObs
from stable_baselines3.common.vec_env.util import obs_space_info, dict_to_obs
from MyDummyVecEnv import MyDummyVecEnv
@PublicAPI
class MyRemoteVectorEnv(BaseEnv):
"""Vector env that executes envs in remote workers.
This provides dynamic batching of inference as observations are returned
from the remote simulator actors. Both single and multi-agent child envs
are supported, and envs can be stepped synchronously or async.
You shouldn't need to instantiate this class directly. It's automatically
inserted when you use the `remote_worker_envs` option for Trainers.
"""
@property
def observation_space(self):
return self._observation_space
def __init__(self, make_env: Callable[[int], EnvType], num_workers: int, env_per_worker: int, observation_space: Optional[gym.spaces.Space], device: torch.device):
self.make_local_env = make_env
self.num_workers = num_workers
self.env_per_worker = env_per_worker
self.num_envs = num_workers * env_per_worker
self.poll_timeout = None
self.actors = None # lazy init
self.pending = None # lazy init
self.observation_space = observation_space
self.keys, shapes, dtypes = obs_space_info(self.observation_space)
self.device = device
self.buf_obs = OrderedDict(
[(k, torch.zeros((self.num_envs,) + tuple(shapes[k]), dtype=torch.float, device=self.device)) for k in self.keys])
self.buf_dones = np.zeros((self.num_envs,), dtype=bool)
self.buf_rews = np.zeros((self.num_envs,), dtype=np.float32)
self.buf_infos = [{} for _ in range(self.num_envs)]
def _save_obs(self, env_idx: int, obs: VecEnvObs) -> None:
for key in self.keys:
self.buf_obs[key][env_idx * self.env_per_worker: (env_idx + 1) * self.env_per_worker] = torch.from_numpy(obs[key]).to(self.device,
non_blocking=True)
def poll(self) -> Tuple[MultiEnvDict, MultiEnvDict, MultiEnvDict,
MultiEnvDict, MultiEnvDict]:
if self.actors is None:
def make_remote_env(i):
return _RemoteSingleAgentEnv.remote(self.make_local_env, i, self.env_per_worker)
self.actors = [make_remote_env(i) for i in range(self.num_workers)]
if self.pending is None:
self.pending = {a.reset.remote(): a for a in self.actors}
# each keyed by env_id in [0, num_remote_envs)
ready = []
# Wait for at least 1 env to be ready here
while not ready:
ready, _ = ray.wait(
list(self.pending),
num_returns=len(self.pending),
timeout=self.poll_timeout)
for obj_ref in ready:
actor = self.pending.pop(obj_ref)
env_id = self.actors.index(actor)
ob, rew, done, info = ray.get(obj_ref)
self._save_obs(env_id, ob)
self.buf_rews[env_id * self.env_per_worker: (env_id + 1) * self.env_per_worker] = rew
self.buf_dones[env_id * self.env_per_worker: (env_id + 1) * self.env_per_worker] = done
self.buf_infos[env_id * self.env_per_worker: (env_id + 1) * self.env_per_worker] = info
return (self._obs_from_buf(), self.buf_rews, self.buf_dones, self.buf_infos)
def _obs_from_buf(self) -> VecEnvObs:
return dict_to_obs(self.observation_space, self.buf_obs)
@PublicAPI
def send_actions(self, action_list) -> None:
for worker_id in range(self.num_workers):
actions = action_list[worker_id * self.env_per_worker: (worker_id + 1) * self.env_per_worker]
actor = self.actors[worker_id]
obj_ref = actor.step.remote(actions)
self.pending[obj_ref] = actor
@PublicAPI
def try_reset(self,
env_id: Optional[EnvID] = None) -> Optional[MultiAgentDict]:
actor = self.actors[env_id]
obj_ref = actor.reset.remote()
self.pending[obj_ref] = actor
return ASYNC_RESET_RETURN
@PublicAPI
def stop(self) -> None:
if self.actors is not None:
for actor in self.actors:
actor.__ray_terminate__.remote()
@observation_space.setter
def observation_space(self, value):
self._observation_space = value
@ray.remote(num_cpus=1)
class _RemoteSingleAgentEnv:
"""Wrapper class for making a gym env a remote actor."""
def __init__(self, make_env, i, env_per_worker):
self.env = MyDummyVecEnv([lambda: make_env((i * env_per_worker) + k) for k in range(env_per_worker)])
def reset(self):
return self.env.reset(), 0, False, {}
def step(self, actions):
return self.env.step(actions)