Spaces:
Runtime error
Runtime error
File size: 6,962 Bytes
c2a60dc 280f948 d746b98 c2a60dc d746b98 c2a60dc dfe9f8e d746b98 9a90bc0 d746b98 9a90bc0 d746b98 9a90bc0 d746b98 c2a60dc d746b98 c2a60dc d746b98 c2a60dc 9a90bc0 a2830cb d746b98 280f948 9a90bc0 dfe9f8e 9a90bc0 bb95fff 9a90bc0 dfe9f8e d746b98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import datetime
import os
import random
import time
import plotly.figure_factory as ff
import json
import pandas as pd
from compiled_jss.CPEnv import CompiledJssEnvCP
from stable_baselines3.common.vec_env import VecEnvWrapper
from torch.distributions import Categorical
import torch
import numpy as np
from MyDummyVecEnv import MyDummyVecEnv
import gradio as gr
class VecPyTorch(VecEnvWrapper):
def __init__(self, venv, device):
super(VecPyTorch, self).__init__(venv)
self.device = device
def reset(self):
return self.venv.reset()
def step_async(self, actions):
self.venv.step_async(actions)
def step_wait(self):
return self.venv.step_wait()
def make_env(seed, instance):
def thunk():
_env = CompiledJssEnvCP(instance)
return _env
return thunk
def solve(file, num_workers, seed):
seed = int(abs(seed))
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
with torch.inference_mode():
device = torch.device('cpu')
actor = torch.jit.load('actor.pt', map_location=device)
actor.eval()
start_time = time.time()
fn_env = [make_env(0, file.name)
for _ in range(num_workers)]
async_envs = MyDummyVecEnv(fn_env, device)
envs = VecPyTorch(async_envs, device)
current_solution_cost = float('inf')
current_solution = ''
obs = envs.reset()
total_episode = 0
while total_episode < envs.num_envs:
logits = actor(obs['interval_rep'], obs['attention_interval_mask'], obs['job_resource_mask'],
obs['action_mask'], obs['index_interval'], obs['start_end_tokens'])
# temperature vector
if num_workers >= 4:
temperature = torch.arange(0.5, 2.0, step=(1.5 / num_workers), device=device)
else:
temperature = torch.ones(num_workers, device=device)
logits = logits / temperature[:, None]
probs = Categorical(logits=logits).probs
# random sample based on logits
actions = torch.multinomial(probs, probs.shape[1]).cpu().numpy()
obs, reward, done, infos = envs.step(actions)
total_episode += done.sum()
# total_actions += 1
# print(f'Episode {total_episode} / {envs.num_envs} - Actions {total_actions}', end='\r')
for env_idx, info in enumerate(infos):
if 'makespan' in info and int(info['makespan']) < current_solution_cost:
current_solution_cost = int(info['makespan'])
current_solution = json.loads(info['solution'])
total_time = time.time() - start_time
pretty_output = ""
for job_id in range(len(current_solution)):
pretty_output += f"Job {job_id}: {current_solution[job_id]}\n"
jobs_data = []
file.seek(0)
line_str: str = file.readline()
line_cnt: int = 1
jobs_count: int = 0
machines_count: int = 0
while line_str:
data = []
split_data = line_str.split()
if line_cnt == 1:
jobs_count, machines_count = int(split_data[0]), int(
split_data[1]
)
else:
i = 0
this_job_op_count = 0
while i < len(split_data):
machine, op_time = int(split_data[i]), int(split_data[i + 1])
data.append((machine, op_time))
i += 2
this_job_op_count += 1
jobs_data.append(data)
line_str = file.readline()
line_cnt += 1
# convert to integer the current_solution
current_solution = [[int(x) for x in y] for y in current_solution]
df = []
for job_id in range(jobs_count):
for task_id in range(len(current_solution[job_id])):
dict_op = dict()
dict_op["Task"] = "Job {}".format(job_id)
start_sec = current_solution[job_id][task_id]
finish_sec = start_sec + jobs_data[job_id][task_id][1]
dict_op["Start"] = datetime.datetime.fromtimestamp(start_sec)
dict_op["Finish"] = datetime.datetime.fromtimestamp(finish_sec)
dict_op["Resource"] = "Machine {}".format(
jobs_data[job_id][task_id][0]
)
df.append(dict_op)
i += 1
fig = None
colors = [
tuple([random.random() for _ in range(3)]) for _ in range(machines_count)
]
if len(df) > 0:
df = pd.DataFrame(df)
fig = ff.create_gantt(
df,
index_col="Resource",
colors=colors,
show_colorbar=True,
group_tasks=True,
)
fig.update_yaxes(
autorange=True
)
return current_solution_cost, str(total_time) + " seconds", pretty_output, fig
title = "Job-Shop Scheduling CP environment with RL dispatching"
description = """A Job-Shop Scheduling Reinforcement Learning based solver using an underlying CP model as an
environment. <br>
For fast inference,
check out the cached examples below.<br> Any Job-Shop Scheduling instance following the standard specification is
compatible. <a href='http://jobshop.jjvh.nl/index.php'>Check out this website for more instances</a>.<br>
Increasing the number of workers will provide better solutions, but will slow down the solving time.
This behavior is different than the one from the paper repository as here agents are run sequentially,
whereas we run agents in parallel (technical limitation due to the platform here). <br>
<br>
For large instance, we recommend running the approach locally outside the interface, as it causes a lot
of overhead and the resource available on this platform are low (1 vCPU and no GPU).<br> """
article = "<p style='text-align: center'>Article Under Review</p>"
# list all non-hidden files in the 'instances' directory
examples = [['instances/' + f, 16, 0] for f in os.listdir('instances') if not f.startswith('.')]
iface = gr.Interface(fn=solve,
inputs=[gr.File(label="Instance File"),
gr.Slider(8, 32, value=16, label="Number of Workers", step=1),
gr.Number(0, label="Random Seed", precision=0)],
outputs=[gr.Text(label="Makespan"), gr.Text(label="Elapsed Time"), gr.Text(label="Solution"),
gr.Plot(label="Solution's Gantt Chart")],
title=title,
description=description,
article=article,
examples=examples,
allow_flagging="never")
iface.launch(enable_queue=True)
|