Commit
·
2afcefd
1
Parent(s):
c144ca3
Update files/functions.py
Browse files- files/functions.py +58 -74
files/functions.py
CHANGED
@@ -75,8 +75,8 @@ sep_box_lilt = cls_box
|
|
75 |
sep_box_layoutxlm = [1000, 1000, 1000, 1000]
|
76 |
|
77 |
# models
|
78 |
-
model_id_lilt = "pierreguillou/lilt-xlm-roberta-base-finetuned-with-DocLayNet-base-at-
|
79 |
-
model_id_layoutxlm = "pierreguillou/layout-xlm-base-finetuned-with-DocLayNet-base-at-
|
80 |
|
81 |
# tokenizer for LayoutXLM
|
82 |
tokenizer_id_layoutxlm = "xlm-roberta-base"
|
@@ -109,7 +109,7 @@ from huggingface_hub import hf_hub_download
|
|
109 |
files = ["example.pdf", "blank.pdf", "blank.png", "languages_iso.csv", "languages_tesseract.csv", "wo_content.png"]
|
110 |
for file_name in files:
|
111 |
path_to_file = hf_hub_download(
|
112 |
-
repo_id = "pierreguillou/Inference-APP-Document-Understanding-at-
|
113 |
filename = "files/" + file_name,
|
114 |
repo_type = "space"
|
115 |
)
|
@@ -146,47 +146,13 @@ for lang_t, langcode_t in zip(langs_t,langscode_t):
|
|
146 |
|
147 |
langdetect2Tesseract = {v:k for k,v in Tesseract2langdetect.items()}
|
148 |
|
149 |
-
## model / feature extractor / tokenizer
|
150 |
|
151 |
-
#
|
152 |
-
import torch
|
153 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
154 |
-
|
155 |
-
## model LiLT
|
156 |
-
import transformers
|
157 |
-
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
158 |
-
tokenizer_lilt = AutoTokenizer.from_pretrained(model_id_lilt)
|
159 |
-
model_lilt = AutoModelForTokenClassification.from_pretrained(model_id_lilt);
|
160 |
-
model_lilt.to(device);
|
161 |
-
|
162 |
-
## model LayoutXLM
|
163 |
-
from transformers import LayoutLMv2ForTokenClassification # LayoutXLMTokenizerFast,
|
164 |
-
model_layoutxlm = LayoutLMv2ForTokenClassification.from_pretrained(model_id_layoutxlm);
|
165 |
-
model_layoutxlm.to(device);
|
166 |
-
|
167 |
-
# feature extractor
|
168 |
-
from transformers import LayoutLMv2FeatureExtractor
|
169 |
-
feature_extractor = LayoutLMv2FeatureExtractor(apply_ocr=False)
|
170 |
-
|
171 |
-
# tokenizer
|
172 |
-
from transformers import AutoTokenizer
|
173 |
-
tokenizer_layoutxlm = AutoTokenizer.from_pretrained(tokenizer_id_layoutxlm)
|
174 |
-
|
175 |
-
# get labels
|
176 |
-
id2label_lilt = model_lilt.config.id2label
|
177 |
-
label2id_lilt = model_lilt.config.label2id
|
178 |
-
num_labels_lilt = len(id2label_lilt)
|
179 |
-
|
180 |
-
id2label_layoutxlm = model_layoutxlm.config.id2label
|
181 |
-
label2id_layoutxlm = model_layoutxlm.config.label2id
|
182 |
-
num_labels_layoutxlm = len(id2label_layoutxlm)
|
183 |
-
|
184 |
-
## General
|
185 |
|
186 |
# get text and bounding boxes from an image
|
187 |
# https://stackoverflow.com/questions/61347755/how-can-i-get-line-coordinates-that-readed-by-tesseract
|
188 |
# https://medium.com/geekculture/tesseract-ocr-understanding-the-contents-of-documents-beyond-their-text-a98704b7c655
|
189 |
-
def
|
190 |
|
191 |
data = {}
|
192 |
for i in range(len(results['line_num'])):
|
@@ -229,43 +195,55 @@ def get_data(results, factor, conf_min=0):
|
|
229 |
par_idx += 1
|
230 |
|
231 |
# get lines of texts, grouped by paragraph
|
232 |
-
|
233 |
row_indexes = list()
|
|
|
|
|
234 |
row_index = 0
|
235 |
for _,par in par_data.items():
|
236 |
count_lines = 0
|
|
|
237 |
for _,line in par.items():
|
238 |
if count_lines == 0: row_indexes.append(row_index)
|
239 |
line_text = ' '.join([item[0] for item in line])
|
240 |
-
|
|
|
241 |
count_lines += 1
|
242 |
row_index += 1
|
243 |
# lines.append("\n")
|
244 |
row_index += 1
|
|
|
|
|
245 |
# lines = lines[:-1]
|
246 |
|
247 |
# get paragraphes boxes (par_boxes)
|
248 |
# get lines boxes (line_boxes)
|
249 |
par_boxes = list()
|
250 |
par_idx = 1
|
251 |
-
line_boxes = list()
|
252 |
line_idx = 1
|
253 |
for _, par in par_data.items():
|
254 |
xmins, ymins, xmaxs, ymaxs = list(), list(), list(), list()
|
|
|
|
|
255 |
for _, line in par.items():
|
256 |
xmin, ymin = line[0][1], line[0][2]
|
257 |
xmax, ymax = (line[-1][1] + line[-1][3]), (line[-1][2] + line[-1][4])
|
258 |
line_boxes.append([int(xmin/factor), int(ymin/factor), int(xmax/factor), int(ymax/factor)])
|
|
|
259 |
xmins.append(xmin)
|
260 |
ymins.append(ymin)
|
261 |
xmaxs.append(xmax)
|
262 |
ymaxs.append(ymax)
|
263 |
line_idx += 1
|
|
|
264 |
xmin, ymin, xmax, ymax = min(xmins), min(ymins), max(xmaxs), max(ymaxs)
|
265 |
-
|
|
|
|
|
266 |
par_idx += 1
|
267 |
|
268 |
-
return
|
269 |
|
270 |
# rescale image to get 300dpi
|
271 |
def set_image_dpi_resize(image):
|
@@ -395,7 +373,8 @@ def sort_data_wo_labels(bboxes, texts):
|
|
395 |
|
396 |
return sorted_bboxes, sorted_texts
|
397 |
|
398 |
-
|
|
|
399 |
|
400 |
# get filename and images of PDF pages
|
401 |
def pdf_to_images(uploaded_pdf):
|
@@ -438,8 +417,8 @@ def extraction_data_from_image(images):
|
|
438 |
|
439 |
# https://pyimagesearch.com/2021/11/15/tesseract-page-segmentation-modes-psms-explained-how-to-improve-your-ocr-accuracy/
|
440 |
custom_config = r'--oem 3 --psm 3 -l eng' # default config PyTesseract: --oem 3 --psm 3 -l eng+deu+fra+jpn+por+spa+rus+hin+chi_sim
|
441 |
-
results,
|
442 |
-
images_ids_list,
|
443 |
|
444 |
try:
|
445 |
for i,image in enumerate(images):
|
@@ -451,7 +430,7 @@ def extraction_data_from_image(images):
|
|
451 |
img = np.array(img, dtype='uint8') # convert PIL to cv2
|
452 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # gray scale image
|
453 |
ret,img = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
|
454 |
-
|
455 |
# OCR PyTesseract | get langs of page
|
456 |
txt = pytesseract.image_to_string(img, config=custom_config)
|
457 |
txt = txt.strip().lower()
|
@@ -474,38 +453,44 @@ def extraction_data_from_image(images):
|
|
474 |
# get image pixels
|
475 |
images_pixels[i] = feature_extractor(images[i], return_tensors="pt").pixel_values
|
476 |
|
477 |
-
|
478 |
-
|
|
|
|
|
479 |
par_boxes_list.append(par_boxes[i])
|
480 |
line_boxes_list.append(line_boxes[i])
|
|
|
481 |
images_ids_list.append(i)
|
482 |
images_pixels_list.append(images_pixels[i])
|
483 |
images_list.append(images[i])
|
484 |
page_no_list.append(i)
|
485 |
-
num_pages_list.append(num_imgs)
|
486 |
|
487 |
except:
|
488 |
print(f"There was an error within the extraction of PDF text by the OCR!")
|
489 |
else:
|
490 |
from datasets import Dataset
|
491 |
-
dataset = Dataset.from_dict({"images_ids": images_ids_list, "images": images_list, "images_pixels": images_pixels_list, "page_no": page_no_list, "num_pages": num_pages_list, "
|
492 |
|
|
|
493 |
# print(f"The text data was successfully extracted by the OCR!")
|
494 |
|
495 |
-
return dataset,
|
496 |
|
497 |
-
|
|
|
498 |
|
499 |
-
def
|
500 |
|
501 |
images_ids_list, chunks_ids_list, input_ids_list, attention_mask_list, bb_list, images_pixels_list = list(), list(), list(), list(), list(), list()
|
502 |
|
503 |
-
# get batch
|
|
|
504 |
batch_images_ids = example["images_ids"]
|
505 |
batch_images = example["images"]
|
506 |
batch_images_pixels = example["images_pixels"]
|
507 |
-
|
508 |
-
|
509 |
batch_images_size = [image.size for image in batch_images]
|
510 |
|
511 |
batch_width, batch_height = [image_size[0] for image_size in batch_images_size], [image_size[1] for image_size in batch_images_size]
|
@@ -515,38 +500,37 @@ def prepare_inference_features(example, tokenizer, max_length, cls_box, sep_box)
|
|
515 |
batch_images_ids = [batch_images_ids]
|
516 |
batch_images = [batch_images]
|
517 |
batch_images_pixels = [batch_images_pixels]
|
518 |
-
|
519 |
-
|
520 |
batch_width, batch_height = [batch_width], [batch_height]
|
521 |
|
522 |
# process all images of the batch
|
523 |
-
for num_batch, (image_id, image_pixels, boxes,
|
524 |
tokens_list = []
|
525 |
bboxes_list = []
|
526 |
|
527 |
# add a dimension if only on image
|
528 |
-
if not isinstance(
|
529 |
-
|
530 |
|
531 |
# convert boxes to original
|
532 |
-
|
533 |
|
534 |
# sort boxes with texts
|
535 |
# we want sorted lists from top to bottom of the image
|
536 |
-
boxes,
|
537 |
|
538 |
count = 0
|
539 |
-
for box,
|
540 |
-
|
541 |
-
|
542 |
-
tokens_list.extend(
|
543 |
-
|
544 |
-
bboxes_list.extend([box] * num_tokens) # number of boxes must be the same as the number of tokens
|
545 |
|
546 |
# use of return_overflowing_tokens=True / stride=doc_stride
|
547 |
# to get parts of image with overlap
|
548 |
# source: https://huggingface.co/course/chapter6/3b?fw=tf#handling-long-contexts
|
549 |
-
encodings = tokenizer(" ".join(
|
550 |
truncation=True,
|
551 |
padding="max_length",
|
552 |
max_length=max_length,
|
@@ -681,7 +665,7 @@ def predictions_token_level(images, custom_encoded_dataset, model_id, model):
|
|
681 |
from functools import reduce
|
682 |
|
683 |
# Get predictions (line level)
|
684 |
-
def
|
685 |
|
686 |
ten_probs_dict, ten_input_ids_dict, ten_bboxes_dict = dict(), dict(), dict()
|
687 |
bboxes_list_dict, input_ids_dict_dict, probs_dict_dict, df = dict(), dict(), dict(), dict()
|
@@ -746,7 +730,7 @@ def predictions_line_level(max_length, tokenizer, id2label, dataset, outputs, im
|
|
746 |
input_ids_dict[str(bbox)].append(input_id)
|
747 |
probs_dict[str(bbox)].append(probs)
|
748 |
bbox_prev = bbox
|
749 |
-
|
750 |
probs_bbox = dict()
|
751 |
for i,bbox in enumerate(bboxes_list):
|
752 |
probs = probs_dict[str(bbox)]
|
|
|
75 |
sep_box_layoutxlm = [1000, 1000, 1000, 1000]
|
76 |
|
77 |
# models
|
78 |
+
model_id_lilt = "pierreguillou/lilt-xlm-roberta-base-finetuned-with-DocLayNet-base-at-paragraphlevel-ml512"
|
79 |
+
model_id_layoutxlm = "pierreguillou/layout-xlm-base-finetuned-with-DocLayNet-base-at-paragraphlevel-ml512"
|
80 |
|
81 |
# tokenizer for LayoutXLM
|
82 |
tokenizer_id_layoutxlm = "xlm-roberta-base"
|
|
|
109 |
files = ["example.pdf", "blank.pdf", "blank.png", "languages_iso.csv", "languages_tesseract.csv", "wo_content.png"]
|
110 |
for file_name in files:
|
111 |
path_to_file = hf_hub_download(
|
112 |
+
repo_id = "pierreguillou/Inference-APP-Document-Understanding-at-paragraphlevel-LiLT-base-LayoutXLM-base-v1",
|
113 |
filename = "files/" + file_name,
|
114 |
repo_type = "space"
|
115 |
)
|
|
|
146 |
|
147 |
langdetect2Tesseract = {v:k for k,v in Tesseract2langdetect.items()}
|
148 |
|
|
|
149 |
|
150 |
+
# General
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
# get text and bounding boxes from an image
|
153 |
# https://stackoverflow.com/questions/61347755/how-can-i-get-line-coordinates-that-readed-by-tesseract
|
154 |
# https://medium.com/geekculture/tesseract-ocr-understanding-the-contents-of-documents-beyond-their-text-a98704b7c655
|
155 |
+
def get_data_paragraph(results, factor, conf_min=0):
|
156 |
|
157 |
data = {}
|
158 |
for i in range(len(results['line_num'])):
|
|
|
195 |
par_idx += 1
|
196 |
|
197 |
# get lines of texts, grouped by paragraph
|
198 |
+
texts_pars = list()
|
199 |
row_indexes = list()
|
200 |
+
texts_lines = list()
|
201 |
+
texts_lines_par = list()
|
202 |
row_index = 0
|
203 |
for _,par in par_data.items():
|
204 |
count_lines = 0
|
205 |
+
lines_par = list()
|
206 |
for _,line in par.items():
|
207 |
if count_lines == 0: row_indexes.append(row_index)
|
208 |
line_text = ' '.join([item[0] for item in line])
|
209 |
+
texts_lines.append(line_text)
|
210 |
+
lines_par.append(line_text)
|
211 |
count_lines += 1
|
212 |
row_index += 1
|
213 |
# lines.append("\n")
|
214 |
row_index += 1
|
215 |
+
texts_lines_par.append(lines_par)
|
216 |
+
texts_pars.append(' '.join(lines_par))
|
217 |
# lines = lines[:-1]
|
218 |
|
219 |
# get paragraphes boxes (par_boxes)
|
220 |
# get lines boxes (line_boxes)
|
221 |
par_boxes = list()
|
222 |
par_idx = 1
|
223 |
+
line_boxes, lines_par_boxes = list(), list()
|
224 |
line_idx = 1
|
225 |
for _, par in par_data.items():
|
226 |
xmins, ymins, xmaxs, ymaxs = list(), list(), list(), list()
|
227 |
+
line_boxes_par = list()
|
228 |
+
count_line_par = 0
|
229 |
for _, line in par.items():
|
230 |
xmin, ymin = line[0][1], line[0][2]
|
231 |
xmax, ymax = (line[-1][1] + line[-1][3]), (line[-1][2] + line[-1][4])
|
232 |
line_boxes.append([int(xmin/factor), int(ymin/factor), int(xmax/factor), int(ymax/factor)])
|
233 |
+
line_boxes_par.append([int(xmin/factor), int(ymin/factor), int(xmax/factor), int(ymax/factor)])
|
234 |
xmins.append(xmin)
|
235 |
ymins.append(ymin)
|
236 |
xmaxs.append(xmax)
|
237 |
ymaxs.append(ymax)
|
238 |
line_idx += 1
|
239 |
+
count_line_par += 1
|
240 |
xmin, ymin, xmax, ymax = min(xmins), min(ymins), max(xmaxs), max(ymaxs)
|
241 |
+
par_bbox = [int(xmin/factor), int(ymin/factor), int(xmax/factor), int(ymax/factor)]
|
242 |
+
par_boxes.append(par_bbox)
|
243 |
+
lines_par_boxes.append(line_boxes_par)
|
244 |
par_idx += 1
|
245 |
|
246 |
+
return texts_lines, texts_pars, texts_lines_par, row_indexes, par_boxes, line_boxes, lines_par_boxes
|
247 |
|
248 |
# rescale image to get 300dpi
|
249 |
def set_image_dpi_resize(image):
|
|
|
373 |
|
374 |
return sorted_bboxes, sorted_texts
|
375 |
|
376 |
+
|
377 |
+
# PDF processing
|
378 |
|
379 |
# get filename and images of PDF pages
|
380 |
def pdf_to_images(uploaded_pdf):
|
|
|
417 |
|
418 |
# https://pyimagesearch.com/2021/11/15/tesseract-page-segmentation-modes-psms-explained-how-to-improve-your-ocr-accuracy/
|
419 |
custom_config = r'--oem 3 --psm 3 -l eng' # default config PyTesseract: --oem 3 --psm 3 -l eng+deu+fra+jpn+por+spa+rus+hin+chi_sim
|
420 |
+
results, texts_lines, texts_pars, texts_lines_par, row_indexes, par_boxes, line_boxes, lines_par_boxes, images_pixels = dict(), dict(), dict(), dict(), dict(), dict(), dict(), dict(), dict()
|
421 |
+
images_ids_list, texts_lines_list, texts_pars_list, texts_lines_par_list, par_boxes_list, line_boxes_list, lines_par_boxes_list, images_list, images_pixels_list, page_no_list, num_pages_list = list(), list(), list(), list(), list(), list(), list(), list(), list(), list(), list()
|
422 |
|
423 |
try:
|
424 |
for i,image in enumerate(images):
|
|
|
430 |
img = np.array(img, dtype='uint8') # convert PIL to cv2
|
431 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # gray scale image
|
432 |
ret,img = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
|
433 |
+
|
434 |
# OCR PyTesseract | get langs of page
|
435 |
txt = pytesseract.image_to_string(img, config=custom_config)
|
436 |
txt = txt.strip().lower()
|
|
|
453 |
# get image pixels
|
454 |
images_pixels[i] = feature_extractor(images[i], return_tensors="pt").pixel_values
|
455 |
|
456 |
+
texts_lines[i], texts_pars[i], texts_lines_par[i], row_indexes[i], par_boxes[i], line_boxes[i], lines_par_boxes[i] = get_data_paragraph(results[i], factor, conf_min=0)
|
457 |
+
texts_lines_list.append(texts_lines[i])
|
458 |
+
texts_pars_list.append(texts_pars[i])
|
459 |
+
texts_lines_par_list.append(texts_lines_par[i])
|
460 |
par_boxes_list.append(par_boxes[i])
|
461 |
line_boxes_list.append(line_boxes[i])
|
462 |
+
lines_par_boxes_list.append(lines_par_boxes[i])
|
463 |
images_ids_list.append(i)
|
464 |
images_pixels_list.append(images_pixels[i])
|
465 |
images_list.append(images[i])
|
466 |
page_no_list.append(i)
|
467 |
+
num_pages_list.append(num_imgs)
|
468 |
|
469 |
except:
|
470 |
print(f"There was an error within the extraction of PDF text by the OCR!")
|
471 |
else:
|
472 |
from datasets import Dataset
|
473 |
+
dataset = Dataset.from_dict({"images_ids": images_ids_list, "images": images_list, "images_pixels": images_pixels_list, "page_no": page_no_list, "num_pages": num_pages_list, "texts_line": texts_lines_list, "texts_par": texts_pars_list, "texts_lines_par": texts_lines_par_list, "bboxes_par": par_boxes_list, "bboxes_lines_par":lines_par_boxes_list})
|
474 |
|
475 |
+
|
476 |
# print(f"The text data was successfully extracted by the OCR!")
|
477 |
|
478 |
+
return dataset, texts_lines, texts_pars, texts_lines_par, row_indexes, par_boxes, line_boxes, lines_par_boxes
|
479 |
|
480 |
+
|
481 |
+
# Inference
|
482 |
|
483 |
+
def prepare_inference_features_paragraph(example, tokenizer, max_length, cls_box, sep_box):
|
484 |
|
485 |
images_ids_list, chunks_ids_list, input_ids_list, attention_mask_list, bb_list, images_pixels_list = list(), list(), list(), list(), list(), list()
|
486 |
|
487 |
+
# get batch
|
488 |
+
# batch_page_hash = example["page_hash"]
|
489 |
batch_images_ids = example["images_ids"]
|
490 |
batch_images = example["images"]
|
491 |
batch_images_pixels = example["images_pixels"]
|
492 |
+
batch_bboxes_par = example["bboxes_par"]
|
493 |
+
batch_texts_par = example["texts_par"]
|
494 |
batch_images_size = [image.size for image in batch_images]
|
495 |
|
496 |
batch_width, batch_height = [image_size[0] for image_size in batch_images_size], [image_size[1] for image_size in batch_images_size]
|
|
|
500 |
batch_images_ids = [batch_images_ids]
|
501 |
batch_images = [batch_images]
|
502 |
batch_images_pixels = [batch_images_pixels]
|
503 |
+
batch_bboxes_par = [batch_bboxes_par]
|
504 |
+
batch_texts_par = [batch_texts_par]
|
505 |
batch_width, batch_height = [batch_width], [batch_height]
|
506 |
|
507 |
# process all images of the batch
|
508 |
+
for num_batch, (image_id, image_pixels, boxes, texts_par, width, height) in enumerate(zip(batch_images_ids, batch_images_pixels, batch_bboxes_par, batch_texts_par, batch_width, batch_height)):
|
509 |
tokens_list = []
|
510 |
bboxes_list = []
|
511 |
|
512 |
# add a dimension if only on image
|
513 |
+
if not isinstance(texts_par, list):
|
514 |
+
texts_par, boxes = [texts_par], [boxes]
|
515 |
|
516 |
# convert boxes to original
|
517 |
+
normalize_bboxes_par = [normalize_box(upperleft_to_lowerright(box), width, height) for box in boxes]
|
518 |
|
519 |
# sort boxes with texts
|
520 |
# we want sorted lists from top to bottom of the image
|
521 |
+
boxes, texts_par = sort_data_wo_labels(normalize_bboxes_par, texts_par)
|
522 |
|
523 |
count = 0
|
524 |
+
for box, text_par in zip(boxes, texts_par):
|
525 |
+
tokens_par = tokenizer.tokenize(text_par)
|
526 |
+
num_tokens_par = len(tokens_par) # get number of tokens
|
527 |
+
tokens_list.extend(tokens_par)
|
528 |
+
bboxes_list.extend([box] * num_tokens_par) # number of boxes must be the same as the number of tokens
|
|
|
529 |
|
530 |
# use of return_overflowing_tokens=True / stride=doc_stride
|
531 |
# to get parts of image with overlap
|
532 |
# source: https://huggingface.co/course/chapter6/3b?fw=tf#handling-long-contexts
|
533 |
+
encodings = tokenizer(" ".join(texts_par),
|
534 |
truncation=True,
|
535 |
padding="max_length",
|
536 |
max_length=max_length,
|
|
|
665 |
from functools import reduce
|
666 |
|
667 |
# Get predictions (line level)
|
668 |
+
def predictions_paragraph_level(max_length, tokenizer, id2label, dataset, outputs, images_ids_list, chunk_ids, input_ids, bboxes, cls_box, sep_box):
|
669 |
|
670 |
ten_probs_dict, ten_input_ids_dict, ten_bboxes_dict = dict(), dict(), dict()
|
671 |
bboxes_list_dict, input_ids_dict_dict, probs_dict_dict, df = dict(), dict(), dict(), dict()
|
|
|
730 |
input_ids_dict[str(bbox)].append(input_id)
|
731 |
probs_dict[str(bbox)].append(probs)
|
732 |
bbox_prev = bbox
|
733 |
+
|
734 |
probs_bbox = dict()
|
735 |
for i,bbox in enumerate(bboxes_list):
|
736 |
probs = probs_dict[str(bbox)]
|