File size: 8,424 Bytes
50cabe1
8abdfb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50cabe1
8abdfb5
50cabe1
 
 
 
8abdfb5
 
 
 
 
 
 
 
 
 
 
 
 
 
f10445c
 
8abdfb5
 
 
 
 
 
 
 
 
 
 
 
 
f10445c
8abdfb5
 
f10445c
 
e9dc89e
b4e599c
8abdfb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
357488c
8abdfb5
 
 
 
 
 
 
 
 
 
 
 
 
a2850e1
 
8abdfb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import gdown
import os
import torch
import requests
import numpy as np
import numpy.matlib
import copy
import cv2
from PIL import Image
from typing import List
import timm
import gradio as gr
import torchvision.transforms as transforms

from pim_module import PluginMoodel  # Assure-toi que ce fichier est présent

# === Téléchargement automatique depuis Google Drive ===
if not os.path.exists("weights.pt"):
    print("Téléchargement des poids depuis Google Drive avec gdown...")
    file_id = "1Ck9qyjs4_c_fqgaEpZ0eN9jIV5TiqkXp"
    url = f"https://drive.google.com/uc?id={file_id}"
    gdown.download(url, "weights.pt", quiet=False)



# === Classes
classes_list = [
    "Ferrage_et_accessoires_ANTI_FAUSSE_MANOEUVRE",
    "Ferrage_et_accessoires_Busettes",
    "Ferrage_et_accessoires_Butees",
    "Ferrage_et_accessoires_Chariots",
    "Ferrage_et_accessoires_Charniere",
    "Ferrage_et_accessoires_Compas_limiteur",
    "Ferrage_et_accessoires_Renvois_d'angle",
    "Joints_et_consommables_Equerres_aluminium_moulees",
    "Joints_et_consommables_Joints_a_glisser",
    "Joints_et_consommables_Joints_EPDM",
    "Joints_et_consommables_Joints_PVC_aluminium",
    "Joints_et_consommables_Joints_a_clipser",
    "Joints_et_consommables_Joints_a_coller",
    "Joints_et_consommables_Silicone_pour_vitrage_alu",
    "Joints_et_consommables_Visserie_inox_alu",
    "Poignee_carre_7_mm",
    "Poignee_carre_8_mm",
    "Poignee_cremone",
    "Poignee_cuvette",
    "Poignee_de_tirage",
    "Poignee_pour_Levant_Coulissant",
    "Serrure_Cremone_multipoints",
    "Serrure_Cuvette",
    "Serrure_Gaches",
    "Serrure_Pene_Crochet",
    "Serrure_Tringles",
    "Serrure_pour_Porte",
]


# === Classes : attention elles doivent être dans l'ordre que donne liste.sort() en Python
classes_list = ['Ferrage_et_accessoires_ANTI_FAUSSE_MANOEUVRE', 'Ferrage_et_accessoires_Busettes', 'Ferrage_et_accessoires_Butees', 'Ferrage_et_accessoires_Chariots', 'Ferrage_et_accessoires_Charniere', 'Ferrage_et_accessoires_Compas_limiteur', "Ferrage_et_accessoires_Renvois_d'angle", 'Joints_et_consommables_Equerres_aluminium_moulees', 'Joints_et_consommables_Joints_EPDM', 'Joints_et_consommables_Joints_PVC_aluminium', 'Joints_et_consommables_Joints_a_clipser', 'Joints_et_consommables_Joints_a_coller', 'Joints_et_consommables_Joints_a_glisser', 'Joints_et_consommables_Silicone_pour_vitrage_alu', 'Joints_et_consommables_Visserie_inox_alu', 'Poignee_carre_7_mm', 'Poignee_carre_8_mm', 'Poignee_cremone', 'Poignee_cuvette', 'Poignee_de_tirage', 'Poignee_pour_Levant_Coulissant', 'Serrure_Cremone_multipoints', 'Serrure_Cuvette', 'Serrure_Gaches', 'Serrure_Pene_Crochet', 'Serrure_Tringles', 'Serrure_pour_Porte']

data_size = 384
fpn_size = 1536
num_classes = 27
num_selects = {'layer1': 256, 'layer2': 128, 'layer3': 64, 'layer4': 32}
features, grads, module_id_mapper = {}, {}, {}

def forward_hook(module, inp_hs, out_hs):
    layer_id = len(features) + 1
    module_id_mapper[module] = layer_id
    features[layer_id] = {"in": inp_hs, "out": out_hs}

def backward_hook(module, inp_grad, out_grad):
    layer_id = module_id_mapper[module]
    grads[layer_id] = {"in": inp_grad, "out": out_grad}

def build_model(path: str):
    backbone = timm.create_model('swin_large_patch4_window12_384_in22k', pretrained=True)
    model = PluginMoodel(
        backbone=backbone,
        return_nodes=None,
        img_size=data_size,
        use_fpn=True,
        fpn_size=fpn_size,
        proj_type="Linear",
        upsample_type="Conv",
        use_selection=True,
        num_classes=num_classes,
        num_selects=num_selects,
        use_combiner=True,
        comb_proj_size=None
    )
    ckpt = torch.load(path, map_location="cpu", weights_only=False)
    model.load_state_dict(ckpt["model"], strict=False)
    model.eval()

    for layer in [0, 1, 2, 3]:
        model.backbone.layers[layer].register_forward_hook(forward_hook)
        model.backbone.layers[layer].register_full_backward_hook(backward_hook)

    for i in range(1, 5):
        getattr(model.fpn_down, f'Proj_layer{i}').register_forward_hook(forward_hook)
        getattr(model.fpn_down, f'Proj_layer{i}').register_full_backward_hook(backward_hook)
        getattr(model.fpn_up, f'Proj_layer{i}').register_forward_hook(forward_hook)
        getattr(model.fpn_up, f'Proj_layer{i}').register_full_backward_hook(backward_hook)

    return model

class ImgLoader:
    def __init__(self, img_size):
        self.transform = transforms.Compose([
            transforms.Resize((510, 510), Image.BILINEAR),
            transforms.CenterCrop((img_size, img_size)),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
        ])

    def load(self, input_img):
        if isinstance(input_img, str):
            ori_img = cv2.imread(input_img)
            img = Image.fromarray(cv2.cvtColor(ori_img, cv2.COLOR_BGR2RGB))
        elif isinstance(input_img, Image.Image):
            img = input_img
        else:
            raise ValueError("Image invalide")

        if img.mode != "RGB":
            img = img.convert("RGB")

        return self.transform(img).unsqueeze(0)

def cal_backward(out) -> dict:
    target_layer_names = ['layer1', 'layer2', 'layer3', 'layer4',
                          'FPN1_layer1', 'FPN1_layer2', 'FPN1_layer3', 'FPN1_layer4', 'comb_outs']

    sum_out = None
    for name in target_layer_names:
        tmp_out = out[name].mean(1) if name != "comb_outs" else out[name]
        tmp_out = torch.softmax(tmp_out, dim=-1)
        sum_out = tmp_out if sum_out is None else sum_out + tmp_out

    with torch.no_grad():
        smax = torch.softmax(sum_out, dim=-1)
        A = np.transpose(np.matlib.repmat(smax[0], num_classes, 1)) - np.eye(num_classes)
        _, _, V = np.linalg.svd(A, full_matrices=True)
        V = V[num_classes - 1, :]
        if V[0] < 0:
            V = -V
        V = np.log(V)
        V = V - min(V)
        V = V / sum(V)

        top5_indices = np.argsort(-V)[:5]
        top5_scores = -np.sort(-V)[:5]

    # Construction du dictionnaire pour gr.Label
    top5_dict = {classes_list[int(idx)]: float(f"{score:.4f}") for idx, score in zip(top5_indices, top5_scores)}
    return top5_dict

# === Chargement du modèle
model = build_model("weights.pt")
img_loader = ImgLoader(data_size)



def predict_image(image: Image.Image):
    global features, grads, module_id_mapper
    features, grads, module_id_mapper = {}, {}, {}

    if image is None:
        return {}
#        raise ValueError("Aucune image reçue. Vérifie l'entrée.")

    if image.mode != "RGB":
        image = image.convert("RGB")

    image_path = "temp.jpg"
    image.save(image_path)

    img_tensor = img_loader.load(image_path)
    out = model(img_tensor)
    top5_dict = cal_backward(out)  # {classe: score}

    gallery_outputs = []
    for idx, class_name in enumerate(list(top5_dict.keys())):
        images = [
            (f"imgs/{class_name}/{class_name}_0001.jpg", f"Exemple {class_name} 1"),
            (f"imgs/{class_name}/{class_name}_0002.jpg", f"Exemple {class_name} 2"),
            (f"imgs/{class_name}/{class_name}_0003.jpg", f"Exemple {class_name} 3"),
        ]
        gallery_outputs.append(images)

    return top5_dict, *gallery_outputs


# === Interface Gradio
with gr.Blocks(css="""
.gr-image-upload { display: none !important }
.gallery-container .gr-box { height: auto !important; padding: 0 !important; }
""") as demo:
    with gr.Row():
        with gr.Column(scale=1):
            with gr.Tab("Téléversement"):
                image_input_upload = gr.Image(type="pil", label="Image à classer (upload)", sources=["upload"])
            with gr.Tab("Webcam"):
                image_input_webcam = gr.Image(type="pil", label="Image à classer (webcam)", sources=["webcam"])

        with gr.Column(scale=1.5):
            label_output = gr.Label(label="Prédictions")
            gallery_outputs = [
                gr.Gallery(label=f"", columns=3, height=300, container=True, elem_classes=["gallery-container"])
                for i in range(5)
            ]

    image_input_upload.change(fn=predict_image, inputs=image_input_upload, outputs=[label_output] + gallery_outputs)
    image_input_webcam.change(fn=predict_image, inputs=image_input_webcam, outputs=[label_output] + gallery_outputs)

if __name__ == "__main__":
    demo.launch()