Spaces:
Runtime error
Runtime error
""" PyTorch FX Based Feature Extraction Helpers | |
Using https://pytorch.org/vision/stable/feature_extraction.html | |
""" | |
from typing import Callable | |
from torch import nn | |
from .features import _get_feature_info | |
try: | |
from torchvision.models.feature_extraction import create_feature_extractor | |
has_fx_feature_extraction = True | |
except ImportError: | |
has_fx_feature_extraction = False | |
# Layers we went to treat as leaf modules | |
from .layers import Conv2dSame, ScaledStdConv2dSame, BatchNormAct2d, BlurPool2d, CondConv2d, StdConv2dSame, DropPath | |
from .layers.non_local_attn import BilinearAttnTransform | |
from .layers.pool2d_same import MaxPool2dSame, AvgPool2dSame | |
# NOTE: By default, any modules from timm.models.layers that we want to treat as leaf modules go here | |
# BUT modules from timm.models should use the registration mechanism below | |
_leaf_modules = { | |
BatchNormAct2d, # reason: flow control for jit scripting | |
BilinearAttnTransform, # reason: flow control t <= 1 | |
BlurPool2d, # reason: TypeError: F.conv2d received Proxy in groups=x.shape[1] | |
# Reason: get_same_padding has a max which raises a control flow error | |
Conv2dSame, MaxPool2dSame, ScaledStdConv2dSame, StdConv2dSame, AvgPool2dSame, | |
CondConv2d, # reason: TypeError: F.conv2d received Proxy in groups=self.groups * B (because B = x.shape[0]) | |
DropPath, # reason: TypeError: rand recieved Proxy in `size` argument | |
} | |
try: | |
from .layers import InplaceAbn | |
_leaf_modules.add(InplaceAbn) | |
except ImportError: | |
pass | |
def register_notrace_module(module: nn.Module): | |
""" | |
Any module not under timm.models.layers should get this decorator if we don't want to trace through it. | |
""" | |
_leaf_modules.add(module) | |
return module | |
# Functions we want to autowrap (treat them as leaves) | |
_autowrap_functions = set() | |
def register_notrace_function(func: Callable): | |
""" | |
Decorator for functions which ought not to be traced through | |
""" | |
_autowrap_functions.add(func) | |
return func | |
class FeatureGraphNet(nn.Module): | |
def __init__(self, model, out_indices, out_map=None): | |
super().__init__() | |
assert has_fx_feature_extraction, 'Please update to PyTorch 1.10+, torchvision 0.11+ for FX feature extraction' | |
self.feature_info = _get_feature_info(model, out_indices) | |
if out_map is not None: | |
assert len(out_map) == len(out_indices) | |
return_nodes = {info['module']: out_map[i] if out_map is not None else info['module'] | |
for i, info in enumerate(self.feature_info) if i in out_indices} | |
self.graph_module = create_feature_extractor( | |
model, return_nodes, | |
tracer_kwargs={'leaf_modules': list(_leaf_modules), 'autowrap_functions': list(_autowrap_functions)}) | |
def forward(self, x): | |
return list(self.graph_module(x).values()) | |