Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -150,46 +150,107 @@ def post_process_summary(summary):
|
|
150 |
return cleaned_summary
|
151 |
|
152 |
def improve_summary_generation(text, model, tokenizer):
|
153 |
-
"""Enhanced version of
|
154 |
if not isinstance(text, str) or not text.strip():
|
155 |
return "No abstract available to summarize."
|
156 |
|
|
|
157 |
word_count = len(text.split())
|
158 |
-
if word_count <
|
159 |
return text
|
160 |
|
|
|
161 |
formatted_text = preprocess_text(text)
|
162 |
|
163 |
-
#
|
164 |
-
inputs = tokenizer(
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
166 |
|
|
|
167 |
with torch.no_grad():
|
168 |
summary_ids = model.generate(
|
169 |
**{
|
170 |
"input_ids": inputs["input_ids"],
|
171 |
"attention_mask": inputs["attention_mask"],
|
172 |
-
"max_length":
|
173 |
-
"min_length":
|
174 |
-
"num_beams":
|
175 |
-
"length_penalty":
|
176 |
-
"early_stopping": True,
|
177 |
"no_repeat_ngram_size": 3,
|
178 |
-
"
|
179 |
-
"
|
180 |
-
"
|
|
|
|
|
181 |
}
|
182 |
)
|
183 |
|
184 |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
185 |
|
186 |
-
#
|
187 |
-
summary =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
-
# Check if summary is too similar to original
|
190 |
-
if summary.lower() == text.lower() or len(summary.split()) / word_count > 0.9:
|
191 |
-
return text
|
192 |
-
|
193 |
return summary
|
194 |
|
195 |
def generate_focused_summary(question, abstracts, model, tokenizer):
|
|
|
150 |
return cleaned_summary
|
151 |
|
152 |
def improve_summary_generation(text, model, tokenizer):
|
153 |
+
"""Enhanced version of summary generation optimized for biomedical papers"""
|
154 |
if not isinstance(text, str) or not text.strip():
|
155 |
return "No abstract available to summarize."
|
156 |
|
157 |
+
# Don't summarize if text is too short
|
158 |
word_count = len(text.split())
|
159 |
+
if word_count < 100: # Increased minimum length for medical texts
|
160 |
return text
|
161 |
|
162 |
+
# Preprocess text
|
163 |
formatted_text = preprocess_text(text)
|
164 |
|
165 |
+
# Prepare inputs
|
166 |
+
inputs = tokenizer(
|
167 |
+
formatted_text,
|
168 |
+
return_tensors="pt",
|
169 |
+
max_length=1024,
|
170 |
+
truncation=True,
|
171 |
+
padding=True
|
172 |
+
)
|
173 |
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
174 |
|
175 |
+
# Generate summary with parameters tuned for biomedical text
|
176 |
with torch.no_grad():
|
177 |
summary_ids = model.generate(
|
178 |
**{
|
179 |
"input_ids": inputs["input_ids"],
|
180 |
"attention_mask": inputs["attention_mask"],
|
181 |
+
"max_length": 300, # Increased for medical summaries
|
182 |
+
"min_length": 100, # Increased to ensure comprehensive coverage
|
183 |
+
"num_beams": 4,
|
184 |
+
"length_penalty": 2.0, # Encourage slightly longer summaries
|
|
|
185 |
"no_repeat_ngram_size": 3,
|
186 |
+
"early_stopping": True,
|
187 |
+
"do_sample": True, # Enable sampling
|
188 |
+
"top_p": 0.95, # Nucleus sampling
|
189 |
+
"temperature": 0.85, # Slightly higher temperature for medical terms
|
190 |
+
"repetition_penalty": 1.5 # Increased to avoid repeated stats/numbers
|
191 |
}
|
192 |
)
|
193 |
|
194 |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
195 |
|
196 |
+
# Enhanced post-processing for medical text
|
197 |
+
summary = post_process_medical_summary(summary)
|
198 |
+
|
199 |
+
return summary
|
200 |
+
|
201 |
+
def post_process_medical_summary(summary):
|
202 |
+
"""Special post-processing for medical/scientific summaries"""
|
203 |
+
if not summary:
|
204 |
+
return summary
|
205 |
+
|
206 |
+
# Fix common medical text issues
|
207 |
+
summary = (summary
|
208 |
+
.replace(" p =", " p=") # Fix p-value spacing
|
209 |
+
.replace(" n =", " n=") # Fix sample size spacing
|
210 |
+
.replace("( ", "(") # Fix parentheses spacing
|
211 |
+
.replace(" )", ")")
|
212 |
+
.replace("vs.", "versus") # Expand abbreviations
|
213 |
+
.replace("..", ".") # Fix double periods
|
214 |
+
)
|
215 |
+
|
216 |
+
# Ensure statistical significance symbols are correct
|
217 |
+
summary = (summary
|
218 |
+
.replace("p < ", "p<")
|
219 |
+
.replace("p > ", "p>")
|
220 |
+
.replace("P < ", "p<")
|
221 |
+
.replace("P > ", "p>")
|
222 |
+
)
|
223 |
+
|
224 |
+
# Fix number formatting
|
225 |
+
summary = (summary
|
226 |
+
.replace(" +/- ", "±")
|
227 |
+
.replace(" ± ", "±")
|
228 |
+
)
|
229 |
+
|
230 |
+
# Split into sentences and process each
|
231 |
+
sentences = [s.strip() for s in summary.split('.')]
|
232 |
+
processed_sentences = []
|
233 |
+
|
234 |
+
for sentence in sentences:
|
235 |
+
if sentence:
|
236 |
+
# Capitalize first letter
|
237 |
+
sentence = sentence[0].upper() + sentence[1:] if sentence else sentence
|
238 |
+
|
239 |
+
# Fix common medical abbreviations spacing
|
240 |
+
sentence = (sentence
|
241 |
+
.replace(" et al ", " et al. ")
|
242 |
+
.replace("et al.", "et al.") # Fix double period
|
243 |
+
)
|
244 |
+
|
245 |
+
processed_sentences.append(sentence)
|
246 |
+
|
247 |
+
# Join sentences
|
248 |
+
summary = '. '.join(processed_sentences)
|
249 |
+
|
250 |
+
# Ensure proper ending
|
251 |
+
if summary and not summary.endswith('.'):
|
252 |
+
summary += '.'
|
253 |
|
|
|
|
|
|
|
|
|
254 |
return summary
|
255 |
|
256 |
def generate_focused_summary(question, abstracts, model, tokenizer):
|