File size: 9,367 Bytes
1d03764
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db89ec1
1d03764
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import streamlit as st
import pandas as pd
import numpy as np
import joblib
import plotly.graph_objects as go
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.preprocessing import RobustScaler, LabelEncoder
from sklearn.feature_selection import SelectFromModel
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
import xgboost as xgb
from sklearn.linear_model import LogisticRegression
import time
from datetime import datetime

class OptimizedStackedClassifier(BaseEstimator, ClassifierMixin):
    def __init__(self):
        self.scaler = RobustScaler()
        self.label_encoder = LabelEncoder()
        self.feature_selector = None
        self.base_models = None
        self.meta_model = None
        self.selected_features = None
        self.start_time = time.time()

    def predict(self, X):
        """Make predictions using optimized pipeline"""
        # Scale and select features
        X_scaled = pd.DataFrame(
            self.scaler.transform(X),
            columns=X.columns
        )
        X_selected = X_scaled[self.selected_features]
        
        # Generate meta-features
        meta_features = np.zeros((X_selected.shape[0], len(self.base_models) * 6))
        for i, (name, model) in enumerate(self.base_models):
            predictions = model.predict_proba(X_selected)
            meta_features[:, i*6:(i+1)*6] = predictions
        
        # Make final predictions
        predictions = self.meta_model.predict(meta_features)
        return self.label_encoder.inverse_transform(predictions)

    def predict_proba(self, X):
        """Get prediction probabilities"""
        # Scale and select features
        X_scaled = pd.DataFrame(
            self.scaler.transform(X),
            columns=X.columns
        )
        X_selected = X_scaled[self.selected_features]
        
        # Generate meta-features
        meta_features = np.zeros((X_selected.shape[0], len(self.base_models) * 6))
        for i, (name, model) in enumerate(self.base_models):
            predictions = model.predict_proba(X_selected)
            meta_features[:, i*6:(i+1)*6] = predictions
        
        return self.meta_model.predict_proba(meta_features)

def load_model(model_path):
    """Load the saved model"""
    try:
        return joblib.load(model_path)
    except Exception as e:
        st.error(f"Error loading model: {str(e)}")
        return None

def create_features(input_data):
    """Create features matching the model's exact feature names"""
    features = {
        'chars_original': input_data['chars_original'],
        'chars_tokenized': input_data['chars_tokenized'],
        'num_words': input_data['num_words'],
        'num_tokens': input_data['num_tokens'],
        'unique_tokens': input_data['unique_tokens'],
        'type_token_ratio': input_data['type_token_ratio'],
        'fertility': input_data['fertility'],
        'token_std': input_data['token_std'],
        'avg_token_len': input_data['avg_token_len']
    }
    
    # Add derived features
    eps = 1e-10
    features['chars_per_word'] = features['chars_original'] / (features['num_words'] + eps)
    features['chars_per_token'] = features['chars_tokenized'] / (features['num_tokens'] + eps)
    features['tokens_per_word'] = features['num_tokens'] / (features['num_words'] + eps)
    features['token_complexity'] = features['token_std'] * features['avg_token_len']
    features['lexical_density'] = features['unique_tokens'] / (features['num_words'] + eps)
    features['log_chars'] = np.log1p(features['chars_original'])
    features['complexity_score'] = (
        features['token_complexity'] * 
        features['lexical_density'] * 
        features['type_token_ratio']
    )
    
    return pd.DataFrame([features])

def plot_probabilities(probabilities):
    """Create a bar plot of prediction probabilities"""
    fig = go.Figure(data=[
        go.Bar(
            x=[f'Level {i+1}' for i in range(len(probabilities))],
            y=probabilities,
            text=np.round(probabilities, 3),
            textposition='auto'
        )
    ])
    fig.update_layout(
        title='Probability Distribution Across Readability Levels',
        xaxis_title='Readability Level',
        yaxis_title='Probability',
        yaxis_range=[0, 1],
        height=400
    )
    return fig

def plot_feature_values(features_df):
    """Create a bar plot of feature values"""
    fig = go.Figure(data=[
        go.Bar(
            x=features_df.columns,
            y=features_df.values[0],
            text=np.round(features_df.values[0], 2),
            textposition='auto'
        )
    ])
    fig.update_layout(
        title='Feature Values',
        xaxis_title='Features',
        yaxis_title='Value',
        xaxis_tickangle=-45,
        height=500
    )
    return fig

def main():
    st.set_page_config(page_title="Text Readability Classifier", layout="wide")
    
    st.title("Text Readability Classifier")
    st.write("This app predicts the readability level based on text characteristics.")
    
    # Load the model
    model_path = "model.joblib"
    model = load_model(model_path)
    
    if model is None:
        st.error("Could not load the model. Please check if the model file exists.")
        return
    
    # Create two columns for layout
    col1, col2 = st.columns([2, 1])
    
    with col1:
        # Input form for text characteristics
        st.subheader("Enter Text Characteristics")
        
        # Basic features input
        input_data = {}
        input_data['chars_original'] = st.number_input('Number of Characters (Original)', value=0)
        input_data['chars_tokenized'] = st.number_input('Number of Characters (Tokenized)', value=0)
        input_data['num_words'] = st.number_input('Number of Words', value=0)
        input_data['num_tokens'] = st.number_input('Number of Tokens', value=0)
        input_data['unique_tokens'] = st.number_input('Number of Unique Tokens', value=0)
        input_data['type_token_ratio'] = st.number_input('Type-Token Ratio', value=0.0, min_value=0.0, max_value=1.0)
        input_data['fertility'] = st.number_input('Fertility', value=0.0)
        input_data['token_std'] = st.number_input('Token Standard Deviation', value=0.0)
        input_data['avg_token_len'] = st.number_input('Average Token Length', value=0.0)
        
        analyze_button = st.button("Analyze", type="primary")
        
        if analyze_button:
            with st.spinner("Analyzing..."):
                try:
                    # Create features dataframe with all required features
                    features_df = create_features(input_data)
                    
                    # Make prediction
                    prediction = model.predict(features_df)[0]
                    probabilities = model.predict_proba(features_df)[0]
                    
                    # Display results
                    st.subheader("Analysis Results")
                    
                    # Create metrics row
                    metrics_cols = st.columns(2)
                    with metrics_cols[0]:
                        st.metric("Readability Level", f"Level {prediction}")
                    with metrics_cols[1]:
                        highest_prob = max(probabilities)
                        st.metric("Confidence", f"{highest_prob:.2%}")
                    
                    # Show probability distribution
                    st.plotly_chart(plot_probabilities(probabilities), 
                                  use_container_width=True)
                    
                    # Show all feature values including derived features
                    st.subheader("All Features (Including Derived)")
                    st.plotly_chart(plot_feature_values(features_df),
                                  use_container_width=True)
                    
                except Exception as e:
                    st.error(f"Error during analysis: {str(e)}")
    
    with col2:
        # Information sidebar
        with st.container():
            st.subheader("About Readability Levels")
            st.write("""
            The model predicts readability on a scale from 1 to 6:
            - **Level 1**: Very Easy
            - **Level 2**: Easy
            - **Level 3**: Moderately Easy
            - **Level 4**: Moderate
            - **Level 5**: Moderately Difficult
            - **Level 6**: Difficult
            """)
            
            st.subheader("Feature Explanations")
            st.write("""
            **Basic Features:**
            - Character counts (original and tokenized)
            - Word and token counts
            - Type-token ratio (vocabulary diversity)
            - Token length statistics
            
            **Derived Features:**
            - Characters per word/token
            - Token complexity
            - Lexical density
            - Overall complexity score
            """)
            
            st.subheader("Model Performance")
            st.write("""
            This model achieves:
            - **Accuracy**: 73.86%
            - **Macro Avg F1**: 0.75
            - **Weighted Avg F1**: 0.74
            
            *Note: Results should be used as guidance rather than absolute measures.*
            """)

if __name__ == "__main__":
    main()